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Zusammenfassung
K-Theorie umfasst viele verschiedene Fachbereiche, darunter Topologie, Alge-
bra, Algebraische Geometrie, Analysis und Physik. Der erste Teil dieser Arbeit,
Kapitel 2, konzentriert sich darauf, die Grundlagen der topologischen Sicht ein-
zuführen. Die wichtigsten Objekte, die wir betrachten, werden mit Hilfe von
zwei unterschiedlichen Äquivalenzrelationen auf der Menge der Vektorbündel
über einem Raum konstruiert. Sie korrespondieren zu zwei verschiedenen Vari-
anten der Stabilisierung, d.h. dem Identifizieren von Bündeln, die sich nur um
triviale Bündel unterscheiden.

Wir übertragen die algebraische Struktur der direkten Summe und des Ten-
sorprodukts von Vektorbündeln auf unsere Mengen. Dadurch werden sie eine
Ringstruktur bekommen. Weiterhin können wir daraus eine Kohomologietheo-
rie konstruieren.

Das sogenannte Bott Periodizitäts Theorem (dessen Beweis wir skizzieren
werden), eines der Hauptresultate über topologische K-Theorie, wird uns sagen,
dass diese Kohomologietheorie zweiperiodisch ist. Schließlich, um zu sehen, dass
unsere gerade entwickelte Theorie tatsächlich nützlich ist, werden wir einige
ihrer Hauptanwendungen nennen: Die Lösung des Hopfinvariante-1-Problems,
sowie Klassifizierunsgsresultate über Divionsalgebren und Parallelisierbarkeit
von Sphären.

Im zweiten Teil dieser Arbeit, bestehend aus Kapitel 3 und 4, präsentieren
wir eine alternative Methode topologische K-Theorie zu konstruieren, die auf
CP∞ basiert. Da dieser Raum Linienbündel klassifiziert, werden wir, in einem
gewissen Sinne, die Objekte, die wir im ersten Teil aus allen Vektorbündeln kon-
struiert haben aus nur den eindimensionalen erhalten. Um dies zu tun, werden
wir einige der Konzepte aus stabiler Homotopietheorie benötigen. Wir werden
hauptsächlich Spektren und ihre assozierten (Ko-)Homologietheorien benötigen,
aber es werden auch einige andere verwandte Dinge eingeführt werden.





Introduction
K-theory encompasses a broad range of fields, among them topology, algebra,
algebraic geometry, analysis and physics. The first main part of this thesis,
Chapter 2, focuses on introducing the foundations of the topological view on it.
The main objects of our study will be constructed from the set of vector bundles
over a space by considering two equivalence relations on it. They correspond
to two different versions of stabilizing, i.e. identifying vector bundles which only
differ by trivial bundles.

We will transfer the algebraic structure on vector bundles given by direct sum
and tensor product to these sets. This will make our objects into rings. Moreover
we can construct a cohomology theory from them. The so called Bott periodicity
theorem (the proof of which we sketch), one of the main results about topological
K-theory, tells us that this cohomology theory is two periodic. Finally, to see
that the theory we developed is actually useful, we state some of the classical
main applications: the solution to the Hopf Invariant One Problem, as well
as classification results about division algebras over R and parallelizability of
spheres.

In the second part of this thesis, consisting of Chapters 3 and 4, we present
an alternative way of constructing topological K-theory which is based on CP∞.
Hence, since this space classifies line bundles, we will in some sense obtain the
objects we constructed in the first part using all vector bundles from only the
one dimensional ones. To do this we will need quite a bit of the concepts and
language from stable homotopy theory. Mainly we will introduce spectra and
their associated (co)homology theories, but there we will also be some related
things sprinkled in.
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1 Preliminaries
1.1 Notation
Definition 1.1. We write lim for categorical limits and colim for categorical
colimits.
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Definition 1.2. We denote by Top the category of topological spaces with
continuous maps and by Top∗ the category of pointed topological spaces with
pointed continuous maps.

We also write CW for the category of CW-complexes with continuous maps
and CW∗ for the category of pointed CW-complexes (for us this will mean
pointed in a 0-cell) with pointed continuous maps.

Furthermore, we denote by hCW∗ the category of pointed CW-complexes
with morphisms the equivalence classes of pointed continuous maps up to ho-
motopy relative to the basepoint and by hCW the non-pointed analog.

When we talk about a map between topological spaces, it is always meant
to lie in the appropriate category. In particular it will be continuous.

If we introduce a pointed space X, the notation x0 for its basepoint will
be implicit. The corresponding analog also holds for Y with y0 and for other
letters.

Definition 1.3. For X and Y two pointed spaces, we will write [X,Y ] for the
set of pointed maps X → Y up to basepoint preserving homotopy.

Definition 1.4. For a space X, we write X+ for the pointed space (Xq{∗}, ∗),
i.e. we adjoin a disjoint basepoint to X. This gives us, in a canonical way,
functors (−)+ : Top → Top∗ and (−)+ : CW → CW∗.

Definition 1.5. LetX be a space. We denote by SX the (unreduced) suspension
of X, i.e. the quotient of X × [0, 1] by the equivalence relation identifying both
X × {0} and X × {1} to a point each.

Definition 1.6. Let X and Y be two pointed spaces. We denote by X ∨ Y
the wedge sum, i.e. the subspace X × y0 ∪ x0 × Y of X × Y with basepoint
(x0, y0), and by X ∧ Y the smash product, i.e. the quotient (X × Y )/(X ∨ Y )
with basepoint [(x0, y0)]. These constructions are functorial in both variables.

We also write ΣX = S1 ∧X, the reduced suspension of X.

We could also have defined ΣX to be the quotient of SX by (the image of)
{x0} × [0, 1]. Hence the “reduced” in its name. Also note that ΣSn ∼= Sn+1.
Remark 1.7. If X and Y are CW-complexes, we want X∧Y = (X × Y )/(X ∨ Y )
to also be a CW-complex. For this to be the case, we have to give X × Y the
weak topology. When talking about the smash product of two CW-complexes,
we will always mean it in this sense. Luckily, if either X or Y has finitely many
cells or both have only countably many, the topologies agree (in particular for
ΣX), so one does not have to be too careful in most cases. For more details see
[HaAT, Chapter 0 and Appendix].

For X and Y two CW-complexes, the smash product X ∧ Y consists of the
basepoint (a 0-cell) and a (n +m)-cell for each pair (Cn

X , C
m
Y ) where Cn

X is a
non-basepoint n-cell of X and Cm

Y is a non-basepoint m-cell of Y .

Definition 1.8. For X a pointed space, we define the reduced cone of X to be
the space C̃X = (X × I)/(X × {0} ∪ {x0} × I) with basepoint [(x0, 0)].

3



Also, given two pointed spaces X and Y and a pointed map f : X → Y , we
set the reduced mapping cone of f to be the pointed space Y ∪f C̃X, i.e. the
reduced cone C̃X glued to Y along f .

By definition there is a homeomorphism C̃X ∼= X ∧ (I, 0).

Definition 1.9. A space X is normal, or T4, if it is T1, i.e. points are closed,
and for each pair of disjoint closed subsets A1, A2 ⊆ X, there exist disjoint open
subsets U1, U2 ⊆ X such that A1 ⊆ U1 and A2 ⊆ U2.

Definition 1.10. By a vector bundle we will mean a complex vector bundle,
though without requiring the dimension of the fibers to be constant. Since we
still have local trivializations p−1(U) → U × Cn, the dimension of the fibers
must still be locally constant, i.e. constant on each connected component.

We denote by Vect(X) the set of vector bundles over X up to isomorphism.
We write Cn ∈ Vect(X) for the n-dimensional trivial bundle over X, omitting
the base space in the notation.

If E ∈ Vect(X) is a vector bundle and A ⊆ X, we write E|A for the vector
bundle restricted to A. Similarly, for x ∈ X, we denote by Ex the fiber of E
over x.

1.2 Point-set lemmas
We now collect some statements about general topology we will need later.

1.2.1 about homotopy equivalences

Definition 1.11. A pointed space X is called well-pointed if the pair (X, {x0})
has the homotopy extension property.

Lemma 1.12. Let X be a well-pointed space. Then the quotient map SX → ΣX
from the unreduced to the reduced suspension is a homotopy equivalence.

A proof can be found in [Bre, VII, Theorem 1.9].

Lemma 1.13. Let X and Y be two spaces, f : X → Y a homotopy equivalence,
and x0 ∈ X, y0 ∈ Y two basepoints such that (X,x0) and (Y, y0) are well-
pointed. If f(x0) = y0, then f is also a homotopy equivalence relative to the
basepoints.

This is a special case of [HaAT, Proposition 0.19].

Lemma 1.14. Let X and Y be two homotopy equivalent, path-connected spaces.
Also let x0 ∈ X and y0 ∈ Y such that (X,x0) and (Y, y0) are well-pointed. Then
(X,x0) and (Y, y0) are also homotopy equivalent relative to the basepoints.

Proof. Choose a homotopy equivalence f : X → Y . If f(x0) = y0, we are done
by the previous lemma. Otherwise we can replace f by a homotopic map f ′

with f ′(x0) = y0. To construct f ′, choose a path γ from f(x0) to y0. Now define
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F : X × {0} ∪ {x0} × [0, 1] by setting it to be f on X and γ on {x0} × [0, 1].
Since (X,x0) is well-pointed (i.e. has the homotopy extension property), we can
extend F to a map G on all of X × [0, 1]. Now f ′ = G|X×{1} has the required
property.

1.2.2 about compact Hausdorff spaces

Lemma 1.15. If X is a compact Hausdorff space and A ⊆ X is closed, then
X/A is again compact and Hausdorff.

Proof. It is compact, since it is the image of the compact space X under the
continuous map q : X → X/A.

We show Hausdorff directly from the definition, i.e. that there exists a
pair of disjoint open neighborhoods U1, U2 for every pair of different points
q(x1), q(x2) ∈ X/A (here x1, x2 ∈ X).

If both q(x1), q(x2) ∈ (X/A) \ (A/A), we can take the disjoint open neigh-
borhoods U1 = q(V1 ∩ (X \ A)) and U2 = q(V2 ∩ (X \ A)) where V1 and V2 are
disjoint open neighborhoods of x1 and x2 respectively (in X). The subspaces
U1 and U2 are open by the definition of the quotient topology.

In the other case, i.e. without loss of generality q(x1) = A/A, we use that,
since X is compact and Hausdorff and thus normal, we have disjoint open sets
V1, V2 containing A and x2 respectively. Their images q(V1) and q(V2) are again
disjoint and open by the quotient topology.

Lemma 1.16. If X and Y are pointed compact Hausdorff spaces, then X ∨ Y
and X ∧ Y are compact and Hausdorff as well. In particular ΣX and C̃X are
compact and Hausdorff.

Proof. The space X ∨ Y is compact since it is the image of the compact space
X q Y under the map identifying the two basepoints. As a subspace of the
Hausdorff space X × Y , it is also Hausdorff.

Since X ∨Y is compact and X×Y is Hausdorff, it is a closed subset. Hence,
by Lemma 1.15, X ∧ Y is compact and Hausdorff as well.

Lemma 1.17. Let X and Y be two pointed compact Hausdorff spaces. There
is a natural homeomorphism

Σ(X ∨ Y ) ∼= ΣX ∨ ΣY

Proof. The inclusions X → X∨Y and Y → X∨Y induce maps ΣX → Σ(X∨Y )
and ΣY → Σ(X ∨Y ) and hence a map ΣX ∨ΣY → Σ(X ∨Y ). This is bijective
and a homeomorphism, since, by the last lemma, domain and target are compact
and Hausdorff. The naturality follows from the naturality of the inclusions of
X respectively Y into X ∨ Y .

Lemma 1.18. Let X is a pointed compact Hausdorff space and A ⊆ X a
pointed inclusion with A closed. Then the reduced suspension commutes with
the quotient, i.e.

ΣX/ΣA ∼= Σ(X/A)
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and this is natural with respect to maps of such pairs.

Proof. Let q : X → X/A be the quotient map. We get a factorization

ΣX Σ(X/A)

ΣX/ΣA

Σq

which is bijective. Since, by Lemma 1.15 and Lemma 1.16, ΣX/ΣA as well
as Σ(X/A) are compact and Hausdorff, the map is already a homeomorphism.
The naturality follows directly from the definitions of the involved maps.

1.2.3 about the one-point compactification and smash products

Definition 1.19. Let X be a space. By X∗ we will denote the one-point
compactification of X, i.e. the set X q {∞} with the topology

{U | U ⊆ X open} ∪ {(X \K) ∪ {∞} | K ⊆ X compact and closed}

When we use X∗ as a pointed space, it has the canonical basepoint ∞.

Lemma 1.20. Let X be a compact Hausdorff space and x ∈ X. Then the map

f : (X \ {x})∗ −→ X, p 7→

{
p p 6= ∞
x p = ∞

is a homeomorphism.

Proof. Since (X \ {x})∗ is compact, X is Hausdorff, and f is bijective, it is
enough to show that it is continuous. The preimage of an open set not containing
x is again open. If x ∈ U ⊆ X is open, its complement X \ U is closed and
hence compact. Thus f−1(U) = (U \ {x}) ∪ {∞} is open in (X \ {x})∗.

Lemma 1.21. Let X and Y be two locally compact (i.e. each point has a closed,
compact neighborhood) Hausdorff spaces. Then the map

f : (X × Y )∗ −→ X∗ ∧ Y ∗

given by (x, y) 7→ [(x, y)] and ∞ 7→ [(∞,∞)] is a homeomorphism.

Proof. The composition

X × Y
ι−−→ X∗ × Y ∗ q−−→ X∗ ∧ Y ∗

of the inclusion ι and the quotient map q is an embedding. Hence we can
consider X × Y to be a subspace of X∗ ∧ Y ∗. In particular we have X × Y =
(X∗ ∧ Y ∗) \ {[(∞,∞)]}.

Since X and Y are locally compact and Hausdorff, the one-point compacti-
fications X∗ and Y ∗ are Hausdorff as well. Hence, by Lemma 1.16, X∗ ∧ Y ∗ is
compact and Hausdorff.

We now apply the previous lemma to obtain the desired result.
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From this lemma we directly get the following well-known result.

Corollary 1.22. There is a homeomorphism Sn ∧ Sm = Sn+m.

1.3 Extending trivializations
In this subsection, we will prove the following lemma, which we will need later.

Lemma 1.23. Let X be a compact Hausdorff space, A ⊆ X closed and E a
vector bundle over X which is trivial when restricted to A. If h : A×Cn → E|A
is a trivialization, then there is an open neighborhood U of A and a trivialization
h′ : U × Cn → E|U such that h′|A×Cn = h.

Before we can proof this lemma, we need the following statements.

Theorem 1.24 (Tietze extension theorem). If X is normal, A ⊆ X closed and
f : A→ R a map, then there exists a map g : X → R such that g|A = f .

This can be found in [Bre, I, Theorem 10.4].

Corollary 1.25. If X is normal, A ⊆ X closed and f : A → Cn, then there
exists a map g : X → Cn, such that g(a) = f(a) for all a ∈ A.

Proof. Since we have Cn ∼= R2n, we can consider f to be 2n maps fi : A → R.
Each of these can be extended to a function gi on all of X. Together they give
us a map g : X → R2n which extends f .

Lemma 1.26. If X is normal and U ⊆ X an open neighborhood of a point
x ∈ X, we can find a closed (in X) neighborhood A of x with A ⊆ U .

Proof. By normality of X, we can find disjoint opens U1, U2 ⊆ X with x ∈ U1

and X \ U ⊆ U2. Then A = X \ U2 ⊆ U is closed in X and contains the
neighborhood V = U1 of x.

We are now ready to prove the lemma.

Proof of Lemma 1.23. First we note again that compact Hausdorff spaces are
normal, hence we can apply the two previous results.

Consider a family of open subsets (Ua)a∈A, with a ∈ Ua ⊆ X, such that E
is trivial over each Ua. Now let Ba ⊆ Ua be a closed neighborhood of a (which
exists by the previous lemma) and ha : Ba × Cn → E|Ba trivializations of E.

Since E is trivial over A, there exist n = dimE|A linearly independent
sections si : A→ E|A, i = 1, . . . , n. Consider the maps πCn ◦h−1

a ◦(si|A∩Ba
) : A∩

Ba → Cn, where πCn is the projection Ba × Cn → Cn. By Corollary 1.25
and the fact that closed subsets of normal spaces are normal, these can be
extended to t′ia : Ba → Cn. From these we get sections tia : Ba → E|Ba given
by b 7→ ha(b, t

′
ja(b)).

Since Ba is a neighborhood of a, there exists Va ⊆ X open such that a ∈ Va ⊆
Ba. The family (Va)a∈A is an open cover of A. Because A is a closed subset of a
compact space and hence compact, there exists a finite subset J ⊆ A such that
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(Vj)j∈J covers A. Since X is compact, thus paracompact, and also Hausdorff,
there is a partition of unity φj , φ : X → [0, 1] subordinate to the open cover
{Vj , X \A} of X. Let V =

⋃
j∈J Vj .

We now define sections ti : V → E|V by ti(v) =
∑

j∈J φjtij . These extend
the si. Let d : V → C be defined by d(v) = det(t1(v), . . . , tn(v)). Since the si
are linearly independent, d is nonzero on A and thus on an open (in V and thus
X) neighborhood U of A. Hence the ti are linearly independent on U . This
gives us a trivialization h′ extending h onto U .

2 An introduction to topological K-Theory
The idea of topological K-theory is to obtain algebraic invariants for spaces
from the topological data given by the set of vector bundles over them. In this
section we will consider two notions of equivalence for vector bundles, provide
the corresponding sets of equivalence classes with the structure of rings, and
show that there is a strong relation between these two objects. Naturally these
invariants will be functorial with respect to continuous maps. Furthermore we
will state (and very roughly sketch a proof of) Bott periodicity, one of the
most fundamental theorems in K-theory. Using this, we obtain a cohomological
structure from these rings. We will mostly follow the (unfinished) book by
Hatcher [HaK], though many things will be presented in more detail.

In this section all spaces are assumed to be compact and Hausdorff.

2.1 The group K̃(X)

We now introduce the first, and most important, of the objects we are going to
study.

Definition 2.1. Let E1 and E2 be two vector bundles over X. We call them
reduced stably isomorphic, written E1 ∼ E2, if there exist n1, n2 ∈ N0 such that
E1 ⊕ Cn1 ∼= E2 ⊕ Cn2 . This defines an equivalence relation.

By K̃(X) we denote the set of ∼-equivalence classes of vector bundles over
a nonempty space X.

As always in algebraic topology, we want to equip K̃(X) with more structure.
In the next lemmas we will provide it the structure of an abelian group, in a
later subsection we will then make it into a (non-unital) ring.

Lemma 2.2. The operation ⊕ descends to a well defined operation on K̃(X)
which we denote by +. It is commutative, associative and has a neutral element
given by the equivalence class of C0.

Proof. We need to show that if E1 ∼ E′
1 and E2 ∼ E′

2, i.e. E1 ⊕Cn ∼= E′
1 ⊕Cn′

and E2 ⊕ Cm ∼= E′
2 ⊕ Cm′

, then E1 ⊕ E2 ∼ E′
1 ⊕ E′

2. This implies E1 ⊕ Cn ⊕
E2⊕Cm ∼= E′

1⊕Cn′
⊕E′

2⊕Cm′
and hence E1⊕E2⊕Cn+m ∼= E′

1⊕E′
2⊕Cn′+m′

which gives the needed conclusion.
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The other statements now follow immediately from the corresponding facts
for ⊕.

Lemma 2.3. For every vector bundle E over X, there exists a vector bundle
E′ over X and n ∈ N0 such that E ⊕ E′ ∼= Cn.

Proof. For a proof of the statement for the usual definition of vector bundles
(with constant fiber dimension), see [HaK, Proposition 1.4].

Let m = maxx∈X dimEx. This is finite since X is compact. Now let E′′ be
the vector bundle which is trivial over each connected component with dimension
m minus the dimension of E over that connected component. Then E ⊕ E′′ is
a vector bundle in the usual sense and we can apply the version of the lemma
which we cited above.

This lemma is one of the main reasons we want our spaces to be Hausdorff
and compact. The statement would be false if one of these conditions were
omitted.

From the last two lemmas follows immediately:

Proposition 2.4. The set K̃(X), together with the operation +, forms an
abelian group. We will call it the reduced K-group of X.

We can already compute the following two, very easy, examples.

Lemma 2.5. We have K̃(pt) ∼= 0 and K̃(S1) ∼= 0.

Proof. All vector bundles over a point are trivial and thus reduced stably iso-
morphic to [C0].

Let D1
+ respectively D1

− be the upper respectively lower semicircle (to be
precise, we take them to be open and a little extended). Now any n-dimensional
vector bundle E → S1 is trivial over both D1

+ and D1
− since they are contractible.

Hence E is completely determined by a clutching function f : S0 → GLn(C)
(since D1

+ ∩ D1
− ' S0). But GLn(C) is path-connected. Thus any such f is

homotopic to a constant map and hence E ∼= Cn.

2.2 The group K(X)

We now want to consider a slightly different notion of equivalence on vector
bundles over a space. In contrast to the last one it remembers the dimension of
the vector bundles.

Definition 2.6. Let E1 and E2 be two vector bundles over X. We call them
stably isomorphic, written E1

∼=s E2, if there exists n ∈ N0 such that E1⊕Cn ∼=
E2 ⊕ Cn. This defines an equivalence relation.

We note that only vector bundles of equal dimension can be stably isomor-
phic.

The following lemma tells us, that direct sum of vector bundles gives us
again an addition on equivalence classes.
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Lemma 2.7. If E1
∼=s E

′
1 and E2

∼=s E
′
2, then E1 ⊕ E2

∼=s E
′
1 ⊕ E′

2, i.e. ⊕ is
well-defined on ∼=s-equivalence classes.

Proof. We have E1 ⊕ Cn ∼= E′
1 ⊕ Cn and E2 ⊕ Cm ∼= E′

2 ⊕ Cm. This implies
E1 ⊕ Cn ⊕ E2 ⊕ Cm ∼= E′

1 ⊕ Cn ⊕ E′
2 ⊕ Cm and hence E1 ⊕ E2 ⊕ Cn+m ∼=

E′
1 ⊕ E′

2 ⊕ Cn+m which gives the conclusion.

We will soon need the following useful cancellation property.

Lemma 2.8. Let E1, E2 and E3 be vector bundles over X such that E1⊕E2
∼=s

E1 ⊕ E3. Then we already have E2
∼=s E3.

Proof. Using Lemma 2.3, we obtain a vector bundle E′
1 such that E1⊕E′

1
∼= Cn.

Thus, adding E′
1 to the equation in the statement, we obtain Cn⊕E2

∼=s Cn⊕E3

and hence E2
∼=s E3.

We would now again like to have a group consisting of the ∼=s-equivalence
classes under the operation ⊕. However, no equivalence class of a vector bundle
E with dimension not constant 0 can have an inverse under ⊕. This is the case
since adding a vector bundle to E can only increase the dimension and thus
never reach the neutral element [C0].

Using the following construction, we formally adjoin inverses of all vector
bundles to obtain a group. This is due to Grothendieck, and hence also known as
the Grothedieck group construction. Since we do not use any special properties of
vector bundles, only the cancellation property, it also works in greater generality.

Lemma 2.9. Consider pairs (E1, E2) of vector bundles over X. Set (E1, E2) =
(E′

1, E
′
2) if E1 ⊕ E′

2
∼=s E

′
1 ⊕ E2. This defines an equivalence relation.

Proof. The relation is reflexive and symmetric. To see that it is transitive, let
E1 ⊕ E′

2
∼=s E

′
1 ⊕ E2 and E′

1 ⊕ E′′
2
∼=s E

′′
1 ⊕ E′

2. Adding the first two equations
we get E1 ⊕E′

2 ⊕E′
1 ⊕E′′

2
∼=s E

′
1 ⊕E2 ⊕E′′

1 ⊕E′
2. Canceling E′

1 ⊕E′
2 we obtain

E1 ⊕ E′′
2
∼=s E

′′
1 ⊕ E2, which is what wanted

We can now define the second fundamental object of our study.

Definition 2.10. We denote by K(X) the set of pairs (E1, E2) of vector bundles
over X with respect to the equivalence relation from the previous lemma.

We will call an element (E1, E2) ∈ K(X) a virtual vector bundle over X and
dimE1|x − dimE2|x its virtual dimension over x ∈ X.

Thinking about addition of differences (a−b)+(c−d) leads us to the following
definition of a group structure on these virtual vector bundles.

Proposition 2.11. We define the binary operation + on K(X) by (E1, E2) +
(E3, E4) = (E1 ⊕ E3, E2 ⊕ E4). This is well-defined and makes K(X) into an
abelian group with neutral element (C0,C0) and inverses given by switching the
two entries.

We will call K(X) the (unreduced) K-group of X.
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Proof. We first show that + is well-defined. Thus, we assume (E1, E2) =
(E′

1, E
′
2) and (E3, E4) = (E′

3, E
′
4), i.e. E1 ⊕ E′

2
∼=s E

′
1 ⊕ E2 and E3 ⊕ E′

4
∼=s

E′
3 ⊕ E4. Adding those, we obtain E1 ⊕ E3 ⊕ E′

2 ⊕ E′
4
∼=s E

′
1 ⊕ E′

3 ⊕ E2 ⊕ E4

which is equivalent to (E1⊕E3, E2⊕E4) = (E′
1⊕E′

3, E
′
2⊕E′

4) which we wanted
to show.

Associativity, commutativity and that (C0,C0) constitutes a neutral element
follow from the corresponding statements for ⊕. The inverse element is given
by switching the entries since we have (E1 ⊕ E2, E2 ⊕ E1) = (C0,C0).

We can think about the pair (E1, E2) as a formal difference E1 − E2 (a
notation we will also sometimes use). This makes sense, since (E1, E2) =
(E1,C0) − (E2,C0) and E 7→ (E,C0) is the canonical monoid homomorphism
Vect(X)/∼=s → K(X).

To close this subsection, we will now prove a useful lemma we will need later.

Lemma 2.12. Every element of K(X) can be written as (E,Cn) for some vector
bundle E and n ∈ N0.

Proof. Let (E1, E2) ∈ K(X). By Lemma 2.3, there exists a vector bundle E′
2

such that E2 ⊕ E′
2
∼= Cn. Thus,

(E1, E2) = (E1, E2) + (E′
2, E

′
2) = (E1 ⊕ E′

2,C
n)

2.3 The ring structure on K(X)

We now want to transfer more of the structure of vector bundles to our groups.
In particular, we want to use the tensor product to obtain a product on both
K(X) and K̃(X). Since we will need the ring structure of K(X) to obtain the
one of K̃(X), we start with the unreduced version.

Proposition 2.13. The multiplication

(E1, E2) · (E3, E4) = (E1 ⊗ E3 ⊕ E2 ⊗ E4, E1 ⊗ E4 ⊕ E2 ⊗ E3)

makes K(X) into a commutative ring with unit element given by (C1,C0).

Proof. First, we show that tensoring is compatible with stable isomorphisms.
Assume E1

∼=s E2, hence E1 ⊕ Cn ∼= E2 ⊕ Cn. Tensoring with E′ yields E1 ⊗
E′ ⊕Cn ⊗E′ ∼= E2 ⊗E′ ⊕Cn ⊗E′. This equation thus also holds for ∼=s where
we can apply the cancellation property to obtain E1 ⊗ E′ ∼=s E2 ⊗ E′.

Next, we show that the multiplication is actually well-defined. So assume
(E1, E2) = (E′

1, E
′
2), i.e. E1 ⊕ E′

2
∼= E′

1 ⊕ E2. Tensoring the equation with E3

respectively E4 and adding the resulting equations (left hand side to right hand
side and vice versa) we obtain

E1 ⊗ E3 ⊕ E′
2 ⊗ E3 ⊕ E′

1 ⊗ E4 ⊕ E2 ⊗ E4

∼=s E
′
1 ⊗ E3 ⊕ E2 ⊗ E3 ⊕ E1 ⊗ E4 ⊕ E′

2 ⊗ E4

11



which, after reordering, becomes the definition of

(E1 ⊗ E3 ⊕ E2 ⊗ E4, E1 ⊗ E4 ⊕ E2 ⊗ E3)

= (E′
1 ⊗ E3 ⊕ E′

2 ⊗ E4, E
′
1 ⊗ E4 ⊕ E′

2 ⊗ E3)

If both (E1, E2) = (E′
1, E

′
2) and (E3, E4) = (E′

3, E
′
4), then we get (E1, E2) ·

(E3, E4) = (E′
1, E

′
2) · (E3, E4) = (E′

1, E
′
2) · (E′

3, E
′
4), using the last computation

and the symmetry of the definition of the multiplication. Thus, we have a
well-defined map K(X)×K(X) → K(X).

Commutativity also follows from the symmetry of the definition. Associa-
tivity follows from the following computation

(E1 ⊗ E3 ⊕ E2 ⊗ E4, E1 ⊗ E4 ⊕ E2 ⊗ E3) · (E5, E6)

= (E1 ⊗ E3 ⊗ E5 ⊕ E2 ⊗ E4 ⊗ E5 ⊕ E1 ⊗ E4 ⊗ E6 ⊕ E2 ⊗ E3 ⊗ E6,

E1 ⊗ E3 ⊗ E6 ⊕ E2 ⊗ E4 ⊗ E6 ⊕ E1 ⊗ E4 ⊗ E5 ⊕ E2 ⊗ E3 ⊗ E5)

= (E1, E2) · (E3 ⊗ E5 ⊕ E4 ⊗ E6, E3 ⊗ E6 ⊕ E4 ⊗ E5)

We have (E1, E2) · (C1,C0) = (E1 ⊗C1, E2 ⊗C1) = (E1, E2). Thus (C1,C0)
constitutes the unit element.

One last computation shows distributivity

(E1, E2) · ((E3, E4) + (E5, E6))

= (E1 ⊗ (E3 ⊕ E5)⊕ E2 ⊗ (E4 ⊕ E6), E1 ⊗ (E4 ⊕ E6)⊕ E2 ⊗ (E3 ⊕ E5))

= (E1, E2) · (E3, E4) + (E1, E2) · (E5, E6)

As usual, we will mostly omit the symbol “·” and just write (E1, E2)(E3, E4).
We will now do the first computation of a ring K(X).
Lemma 2.14. Let pt be the one point space. Then the map

Ψ: K(pt) −→ Z, (E1, E2) 7−→ dim (E1)pt − dim (E2)pt

is a well-defined ring isomorphism.
Proof. Every vector bundle over a point is trivial. Thus every pair of vector
bundles over pt is of the form (Cn,Cm).

Hence Ψ is given by (Cn,Cm) 7→ n−m. It is well-defined since (Cn,Cm) =

(Cn′
,Cm′

) implies n+m′ = n′ +m and thus n−m = n′ −m′. It is compatible
with addition as

(Cn,Cm) + (Cn′
,Cm′

) = (Cn+n′
,Cm+m′

)

7→ (n+ n′)− (m+m′) = (n−m) + (n′ −m′)

It sends the unit to the unit since (C1,C0) 7→ 1. It is compatible with
multiplication as

(Cn,Cm)(Cn′
,Cm′

) = (Cnn′+mm′
,Cnm′+mn′

)

7→ (nn′ +mm′)− (nm′ +mn′) = (n−m)(n′ −m′)

It is surjective and its kernel is given by elements of the form (Cn,Cn) =
(C0,C0) and hence is trivial. Thus the map is an isomorphism.

12



2.4 Functoriality
Proposition 2.15. Let f : X → Y be a map of spaces. We set

K̃(f) : K̃(Y ) −→ K̃(X), [E] 7−→ [f∗E]

K(f) : K(Y ) −→ K(X), (E1, E2) 7−→ (f∗E1, f
∗E2)

With these definitions K(−) and K̃(−) become homotopy invariant, contravari-
ant functors from compact Hausdorff spaces to abelian groups.

Proof. We first need to see that the maps K(f) and K̃(f) are well-defined. If
E ∼ E′, hence E ⊕ Cn ∼= E′ ⊕ Cn′

, we have

f∗E ⊕ Cn ∼= f∗(E ⊕ Cn) ∼= f∗(E′ ⊕ Cn′
) ∼= f∗E′ ⊕ Cn′

and thus f∗E ∼ f∗E′. Similarly, if (E1, E2) = (E′
1, E

′
2), hence E1 ⊕E′

2 ⊕Cn ∼=
E′

1 ⊕ E2 ⊕ Cn, we have

f∗E1 ⊕ f∗E′
2 ⊕ Cn ∼= f∗(E1 ⊕ E′

2 ⊕ Cn)
∼= f∗(E′

1 ⊕ E2 ⊕ Cn) ∼= f∗E′
1 ⊕ f∗E2 ⊕ Cn

and thus (f∗E1, f
∗E2) = (f∗E′

1, f
∗E′

2).
Since X is compact and hence paracompact, if f ' g are homotopic, the

bundles f∗E and g∗E are isomorphic (cf. [HaK, Theorem 1.6]). This implies
the homotopy invariance.

Since id∗E ∼= E, we have that identities map to identities. As (f ◦ g)∗E ∼=
g∗(f∗E), we have that both of our definitions respect composition.

We will write f∗ for the maps K(f) and K̃(f). Naturally, we also want the
induced maps to be compatible with our ring structure on K(X).

Proposition 2.16. Let f : X → Y be a map of spaces. Then the induced map
K(f) is a ring homomorphism. Thus K(−) can also be considered to be a functor
to rings.

Proof. The map K(f) sends the unit (C1,C0) to the unit (C1,C0). Since pulling
back vector bundles commutes with taking direct sums and tensor products, it
also follows that K(f) is compatible with the multiplication.

2.5 Relation between K(X) and K̃(X)

We will now establish a splitting K(X) ∼= K̃(X) ⊕ Z. This will lead us to the
definition of the ring structure on K̃(X).

Lemma 2.17. The map

Φ: K(X) −→ K̃(X), (E,Cn) 7−→ [E]

is well-defined and a natural group homomorphism. Furthermore, it is surjective
and kerΦ ∼= Z.
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Proof. By Lemma 2.12, we can write every element of K(X) in the form (E,Cn).
The map Φ is well-defined because (E,Cn) = (E′,Cn′

) implies E ⊕ Cn′ ∼=s

E′ ⊕ Cn, thus E ⊕ Cn′
⊕ Cm ∼= E′ ⊕ Cn ⊕ Cm, and hence E ∼ E′. It is

compatible with the addition, by definition of the group structure of K(X) and
K̃(X). The naturality follows directly from the fact that the pullback of a trivial
bundle is trivial.

The map is surjective by definition. Its kernel is given by the elements
(E,Cn) where E ∼ C0. This implies E ⊕ Cm ∼= C0 ⊕ Cm′

and thus

(E,Cn) = (E,C0) + (C0,Cn) = (Cm′
,Cm) + (C0,Cn) = (Cm′

,Cm+n)

Hence the kernel consists of the elements of the form (Cn,Cm) for some n,m ∈
N0. This subgroup is isomorphic to Z under an isomorphism defined exactly as
in Lemma 2.14.

Lemma 2.18. Let X be a space and x0 ∈ X. Then there is a natural, naturally
split short exact sequence of abelian groups

0 K̃(X) K(X) K(x0) 0

Z

ι∗

Ψ ∼=

where ι is the inclusion of x0 into X and the map Ψ is the isomorphism from
Lemma 2.14. We also obtain a natural group isomorphism

K̃(X)⊕ Z ∼= K̃(X)⊕K(x0)
∼=−−→ K(X)

where the map K(x0) → K(X) is induced by collapsing X to its basepoint.

Proof. The composition of Ψ ◦ ι∗ is given by mapping (E1, E2) to dim (E1)x0
−

dim (E2)x0
. Hence its kernel consists of pairs (E1, E2) such that their dimensions

agree over x0. Using Lemma 2.12, this is equal to the subgroup of elements
(E,Cn) such that dimEx0 = n. This, in turn, is isomorphic to K̃(X) via
the surjective map Φ from the previous lemma since the only element of kerΦ
contained in that subgroup is (Cn,Cn) = (C0,C0) and it is hence also injective.

We obtain the desired short exact sequence. The map c∗ : K(x0) → K(X)
induced by the constant map c : X → x0 is a split for it since c ◦ ι = id already
holds for spaces. Hence we get the splitting K(X) ∼= K̃(X)⊕K(x0) as claimed.

The sequence and its split are natural since all occurring maps are.

Remark 2.19. Note that, in the composition K(X)
ι∗−→ K(x0)

Ψ−→ Z, the point
x0 is only used to determine the dimension of fibers over it, which are locally
constant. Hence the identification K(X) ∼= K̃(X)⊕Z actually only depends on
the connected component of x0.
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This isomorphism corresponds to splitting off, from K(X), a Z-factor cor-
responding to the trivial elements, i.e. those of the form (Cn,Cm). This is the
case because the bundles obtained by pulling back along X → x0 are exactly
the trivial bundles.

The inclusion K̃(X) → K(X) identifies K̃(X) with the ideal of virtual vector
bundles of virtual dimension 0 over the basepoint x0.
Remark 2.20. Note that, using the above, we have in particular a natural iso-
morphism

K̃(X+) ∼= ker(K(X+) → K(+)) ∼= K(X)

With this identification the short exact sequence from above becomes, for a
space X and x0 ∈ X,

0 −→ K̃(X) −→ K̃(X+)
(ι+)∗−−−−→ K̃((x0)+) −→ 0

The splitting
K̃(X+) ∼= K̃(X)⊕ K̃(S0)

is then given by the map K̃(S0) → K̃(X+) induced by collapsing X to a point
and the map

K̃(X+) ∼= ker(K(X+) → K(+)) −→ ker(K(X) → K(x0)) ∼= K̃(X)

given by sending a virtual vector bundle a to a|X − Cn where n is the virtual
dimension of a over x0.

2.6 The ring structure on K̃(X)

We would now also like to have a ring structure on K̃(X). Trying the same
idea as in the unreduced case (and assuming it would be well-defined) yields
C0 ∼= E⊗C0 ∼ E⊗C1 ∼= E, i.e., as a ring, we would necessarily have K̃(X) ∼= 0.
This would not be very useful.

Instead we use, for a space X and x0 ∈ X, the short exact sequence from
Lemma 2.18

0 −→ K̃(X) −→ K(X) −→ K(x0) −→ 0

The map K(X) → K(x0) is a ring homomorphisms since it is induced from
a map of spaces. Its kernel is an ideal in K(X) and thus inherits a (non-
unital) multiplication. The multiplication on K̃(X) is now defined to be the
corresponding multiplication under the isomorphism Φ: ker(K(X) → K(x0)) →
K̃(X). This makes K̃(X) into a non-unital ring.

Since this definition depends on the point x0, we have to work with pointed
spaces when considering K̃(X) as a ring.

In the following lemma, we will obtain from this definition an explicit, but
cumbersome, description of this multiplication. This is only to get a feel for it,
we will not need it later.
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Lemma 2.21. Let X be a pointed space, E1 and E2 two vector bundles over X,
and n1 respectively n2 their dimension over x0. Also let, for i ∈ {1, 2}, E′

i be a
vector bundle such that Ei ⊕ E′

i is trivial. Then the multiplication on K̃(X) is
given by

[E1] · [E2] = [E1 ⊗ E2 ⊕ E′
1 ⊗ Cn2 ⊕ E′

2 ⊗ Cn1 ]

Proof. The element Ei corresponds to (Ei,Cni) in ker(K(X) → K(x0)). We
have

(E1,Cn1)(E2,Cn2) = (E1 ⊗ E2 ⊕ Cn1n2 , E1 ⊗ Cn2 ⊕ E2 ⊗ Cn1)

= (E1 ⊗ E2 ⊕ Cn1n2 ⊕ E′
1 ⊗ Cn2 ⊕ E′

2 ⊗ Cn1 ,Cm1n2+m2n1)

where Ei ⊕ E′
i
∼= Cmi . The result follows since Cn1n2 disappears in K̃(X).

Naturally, we again want that this multiplication is compatible with induced
maps. This is what we will show now.

Proposition 2.22. With the just defined multiplicative structure, K̃(−) becomes
an homotopy invariant contravariant functor from pointed compact Hausdorff
spaces to non-unital rings.

Proof. We only need to show that induced maps respect the multiplication,
everything else was shown in Proposition 2.15. One possibility to do this is
through the formula in the previous proposition, using the compatibility of the
pullback with everything occurring. Another, more conceptual, way is directly
over the definition of the multiplication. From the naturality of the short exact
sequence in Lemma 2.18 we get the following commutative diagram

K̃(Y ) K(Y )

K̃(X) K(X)

Note that, by definition, the injections respect the multiplication. Since the
map on the left is just a restriction of the map on the right, which is a ring
homomorphism, it is a homomorphism of non-unital rings.

2.7 Unreduced external product and Product Theorem
We now have internal multiplications for K(X) as well as K̃(X). But, to be able
to state some of the coming theorems, we will also need an external product for
our objects. They will be related in a way similar to the cross and cup product
of ordinary singular cohomology.

Definition 2.23. Let prX : X×Y → X and prY : X×Y → Y be the projections.
Then we define an external product

∗ : K(X)⊗K(Y ) −→ K(X × Y )

via a⊗ b 7→ pr∗X(a) · pr∗Y (b).
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Lemma 2.24. The external product ∗ is well-defined, natural and a ring ho-
momorphism.

Proof. Since pr∗X and pr∗Y are ring homomorphisms, we have, by the universal
property of the tensor product of rings, that ∗ is a well-defined ring homomor-
phism.

For the naturality we want to check that, for maps f : X → X ′ and g : Y →
Y ′, the following diagram commutes

K(X ′)⊗K(Y ′) K(X ′ × Y ′)

K(X)⊗K(Y ) K(X × Y )

∗

f∗⊗g∗ (f×g)∗

∗

This is equivalent to

(f × g)∗(pr∗X′(a) · pr∗Y ′(b)) = pr∗X(f∗(a)) · pr∗Y (g∗(b))

for all a ∈ K(X ′) and b ∈ K(Y ′). Since (f × g)∗ is a ring homomorphism, the
left side of the equation is equal to (f×g)∗(pr∗X′(a)) ·(f×g)∗(pr∗Y ′(b)). Because
there are commuting diagrams

X × Y X X × Y Y

X ′ × Y ′ X ′ X ′ × Y ′ Y ′

prX

f×g f

prY

f×g g

prX′ prY ′

and thus prX′ ◦ (f × g) = f ◦ prX and prY ′ ◦ (f × g) = g ◦ prY , we have that

(f × g)∗(pr∗X′(a)) · (f × g)∗(pr∗Y ′(b)) = pr∗X(f∗(a)) · pr∗Y (g∗(b))

This finishes the proof.

The following lemma will give us, in our case, the usual relation between
internal and external multiplication.

Lemma 2.25. Let ∆ be the diagonal map X → X ×X. Then the composition

K(X)⊗K(X)
∗−−→ K(X ×X)

∆∗

−−→ K(X)

is equal to the normal multiplication on K(X).

Proof. We have

∆∗(a ∗ b) = ∆∗(pr∗1(a) · pr∗2(b)) = ∆∗(pr∗1(a)) ·∆∗(pr∗2(b)) = ab

since pri ◦∆ = id for i ∈ {1, 2}.

We are now almost ready to formulate the Product Theorem, which will be
the main ingredient in the proof of the fundamental Bott Periodicity Theorem.
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Definition 2.26. We will denote by H the canonical line bundle over CP1.

Lemma 2.27. We have (H ⊗ H) ⊕ C1 ∼= H ⊕ H. In K(CP1) ∼= K(S2) this
becomes the equation (H − 1)2 = 0.

Proof. Let D2
+ respectively D2

− be the upper respectively lower hemisphere (to
be precise, we take them to be open and a little extended over the equator).
Now any n-dimensional vector bundle E → S2 is trivial over both D2

+ and D2
−

since they are contractible. Hence E is completely determined by a clutching
function S1 → GLn(C) (since D2

+∩D2
− ' S1). It is a classical exercise that in the

case of H one such function is given by the inclusion z 7→ (z) (for z ∈ S1 ⊂ C),
see e.g. [HaK, Example 1.13].

Hence clutching functions for (H⊗H)⊕C1 respectively H⊕H are given by

z 7−→
(
z2 0
0 1

)
respectively z 7−→

(
z 0
0 z

)
If these maps are homotopic, we are done since then the two bundles are

isomorphic. The next lemma proves this in a little greater generality (so we can
refer to it later).

Lemma 2.28. Let X be a space and f, g : X → GLn(C) two maps. Then
f ⊕ g : X → GL2n(C) and (f · g) ⊕ const1n

: X → GL2n(C) are homotopic.
Here · denotes pointwise matrix multiplication and ⊕ pointwise direct sum of
matrices, which is given by

A⊕B =

(
A 0
0 B

)
Proof. Since GL2n(C) is path-connected, there is a path α : I → GL2n(C) be-
tween the identity matrix 12n and the matrix(

0 1n

1n 0

)
Then the map X × I → GL2n(C) given by

(x, t) 7−→
(
f(x) 0
0 1n

)
α(t)

(
1n 0
0 g(x)

)
α(t)

is a homotopy between

x 7−→
(
f(x) 0
0 g(x)

)
and x 7−→

(
f(x) · g(x) 0

0 1n

)
as we wanted.

Theorem 2.29 (Product Theorem). The map

K(X)⊗ Z[H]/(H2 − 1) −→ K(X × S2)

given by a⊗ b 7→ a ∗ b is an isomorphism of rings for all X.
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Sketch of proof. The basic idea is to, in a few steps, understand vector bundles
over X × S2 in terms of vector bundles over X.

The idea of the proof of two previous lemmas was to consider a vector bundle
over S2 as a clutching function S1 → GLn(C). Applying the same idea in a more
general case, we can glue together vector bundles over X × S2 from a bundle
p : E → X and an automorphism f of the vector bundle p× id : E×S1 → X×S1

(i.e. a continuous choice of isomorphism Ex → Ex for each x ∈ X and z ∈ S1).
Namely we take the two vector bundles E+ given by p× id : E×D2

+ → X ×D2
+

and E− given by p× id : E×D2
− → X×D2

− and glue them together over X×S1

via f . We can obtain every vector bundle over X × S2 in this way.
Now, to prove the statement, one reduces the necessary complexity of the

function f , using Analysis and Linear Algebra, until one arrives at a form which
is easy to handle with respect to the map of which one wants to prove that it is
an isomorphism.

The details of this proof can be found in most books on topological K-theory,
e.g. [HaK, Theorem 2.2] or the classical [At, Corollary 2.2.3].

Corollary 2.30. The map

Z[H]/(H2 − 1) −→ K(S2)

given by H 7→ H is an isomorphism of rings.

Proof. It is the composition

Z[H]/(H2 − 1)
∼=−→ Z⊗

(
Z[H]/(H2 − 1)

)
∼= K(pt)⊗

(
Z[H]/(H2 − 1)

) ∗−→ K(pt× S2)

where the first map is given by a 7→ 1⊗ a and the last map is an isomorphism
by the previous theorem.

2.8 The long exact sequence of a pair
We now start to prove cohomological properties of K̃.

Proposition 2.31. Let A ⊆ X be an inclusion of pointed spaces such that A is
closed in X. Then the sequence of non-unital rings

K̃(X/A)
q∗−−→ K̃(X)

ι∗−−→ K̃(A)

induced by the inclusion ι : A→ X and the quotient map q : X → X/A is exact.

Proof. Since A ⊆ X is closed, it is compact and Hausdorff; also, by Lemma 1.15,
X/A is as well, so K̃(A) and K̃(X/A) actually make sense.

We need to show ker ι∗ = Im q∗. The inclusion ker ι∗ ⊃ Im q∗, i.e. ι∗ ◦q∗ = 0,
is clear since q ◦ ι is constant and thus factors through a point, for which we
have K̃(pt) ∼= 0.
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For the other inclusion we need to show that, for every vector bundle E over
X with E|A ∼ C0, we have E ∼ q∗E′ for some vector bundle E′ over X/A.
By adding a trivial bundle to E, we find a bundle, reduced stably isomorphic
to E, which restricts to a trivial bundle over A. Thus we can, without loss of
generality, assume that E|A is trivial.

We will now show that there is an E′ such that E ∼= q∗E′. To construct E′

we want to collapse E|A to a single fiber. To do this, we choose a trivialization
h : A × Cn → E|A (without it we would not know how to identify the fibers).
Then we can set E′ = E/h = E/(h(a, v) ∼ h(a′, v)) and denote by r : E → E/h
the quotient map. We want E/h to be a vector bundle. For this we only need
to show that it has a local trivialization around the point A/A.

By Lemma 1.23, we can extend h to a trivialization h′ on an open neighbor-
hood U of A. This implies that E/h is trivial over the open set q(U) 3 A/A,
using the map g : (U/A)× Cn → (E/h)|U/A given by the factorization

U × Cn E|U (E/h)|U/A

(U/A)× Cn

h′ r|U

g

Since it is an isomorphism on each fiber, this is an isomorphism of vector bundles
and hence a trivialization.

It only remains to show that indeed q∗(E/h) ∼= E. For this, consider the
diagram

E E/h

X X/A

r

q

The map r sits above q and is an isomorphism on each fiber. Hence, since this
is exactly the defining property of the pullback, we have that the bundle E,
together with the map r, constitutes the pullback of E/h under q.

In general we know that, if the inclusion A ⊆ X is a cofibration and A
is contractible, then the quotient map X → X/A is a homotopy equivalence.
Hence it induces an isomorphism on K̃ (when this makes sense, i.e. X compact
and A ⊆ X closed). It will be useful to know this in greater generality.

Lemma 2.32. Let A ⊆ X be an inclusion of pointed spaces such that A is
closed in X and contractible. Then the quotient map q : X → X/A induces an
isomorphism of non-unital rings q∗ : K̃(X/A) → K̃(X).

Proof. Since A is contractible, we have that E|A is trivial. Let h : E|A → A×Cn

be a trivialization. As in the previous proposition, we obtain a vector bundle
E/h = E/(h−1(a, v) ∼ h−1(a′, v)). We want to see that the isomorphism class
of E/h does not depend on the choice of h.

20



Let h0 and h1 be two such choices. Consider f = h1◦h−1
0 : A×Cn → A×Cn.

This gives us a function φ : A → GLn(C), via φ(a) = (f |{a}×Cn : Cn → Cn),
such that h1(e) = (p(e), φ(p(e)) · (prCn ◦ h0)(e)), where p : E|A → A is the
bundle map. Since A is contractible and GLn(C) is path-connected, there is
a homotopy Φ: A × I → GLn(C) between const1 and φ. From this we obtain
a homotopy H : E|A × I → A × Cn between h0 and h1 given by H(e, t) =
(p(e),Φ(p(e), t) · (prCn ◦h0)(e)). This map gives us, in turn, a map g : E|A× I →
A× Cn × I ∼= A× I× Cn given by g(e, t) = (H(e, t), t). This is a trivialization
over A × I of the bundle E × I over X × I (since it is a fiberwise isomorphism
and hence an isomorphism of vector bundles).

We now set F = (E × I)/(g−1(a, t, v) ∼ g−1(a′, t, v)). This corresponds to
contracting E|A × {t} ⊂ E × I to a single fiber for each t ∈ I. Hence it comes
with a map F → (X/A)× I. Note that, when restricted to (X/A)× {0}, this is
just the bundle E/h0 and analogously for restricting to (X/A)×{1} and E/h1.
Hence, since X/A × I is compact and hence paracompact, F being a vector
bundle would already imply E/h0 ∼= E/h1.

To see that it is one, we only need to show that it has trivializations around
all points in (A/A) × I. Similarly to the last proof, we can, by Lemma 1.23,
extend the trivialization g of E|A× I to a trivialization g′ : E|U × I → U× I×Cn

over an open set U ⊆ X containing A× I. The following factorization then gives
us a trivialization of F around (A/A)× I

E|U × I U × I× Cn (U/A)× I× Cn

F |U/A

g′

Hence we have proven that the bundle E/h over X/A does not depend on
the choice of the trivialization h. Thus we get a well-defined map (of sets)
ψ : Vect(X) → Vect(X/A).

We claim that this is an inverse to q∗ : Vect(X/A) → Vect(X). The compo-
sition q∗ ◦ψ being the identity follows from q∗(E/h) ∼= E, which we have shown
in the last part of the proof of the previous proposition. To see that ψ ◦ q∗ = id,
consider a vector bundle E over X/A. A choice of isomorphism EA/A

∼= Cn

gives us a trivialization h over A of the pullback bundle q∗E. Then the map
q∗E → E factors through the quotient map q∗E → (q∗E)/h and the resulting
map (q∗E)/h→ E is an isomorphism.

Hence q∗ : Vect(X/A) → Vect(X) is bijective and thus q∗ : K̃(X/A) → K̃(X)
surjective. It is also injective since q∗([E]) = [C0] implies

q∗(E ⊕ Cn) ∼= q∗E ⊕ Cn ∼= Cm ∼= q∗(Cm)

and hence E⊕Cn ∼= Cm, i.e. E ∼ C0. Since q∗ : K̃(X/A) → K̃(X) is a bijective
homomorphism of non-unital rings, it is an isomorphism.

We now want to extend the exact sequence K̃(X/A) → K̃(X) → K̃(A) to
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the left. This will be done by a method that applies more generally in similar
situations, namely by using the so called Puppe sequence.
Proposition 2.33. Let (X,A) be a pair of pointed spaces with A ⊆ X closed.
Then there is a natural long exact sequence of non-unital rings

· · · K̃(Σk(X/A)) K̃(ΣkX) K̃(ΣkA)

K̃(Σk−1(X/A)) · · · K̃(A)

Proof. Consider the following, commutative up to homotopy, diagram

A

X

X ∪ C̃A X/A

(X ∪ C̃A) ∪ C̃X ΣA

((X ∪ C̃A) ∪ C̃X) ∪ C̃(X ∪ C̃A) ΣX

ΣX ∪ C̃(ΣA) ΣX/ΣA

...

where the vertical maps are given by inclusion into the reduced mapping cone of
the previous map and the horizontal maps by quotienting out the reduced cone
added in that line. By Lemma 1.15 and Lemma 1.16, all spaces occurring are
compact and Hausdorff. In particular it makes sense to say that, by Lemma 2.32,
the horizontal maps induce isomorphisms on K̃.

We now want to see that the square in the diagram commutes up to homo-
topy. One of the two compositions (X ∪ C̃A)∪ C̃X → ΣX is given by collapsing
X ∪ C̃A to a point. Let us call this map f . The other composition, which we
will call g, is given by collapsing C̃X to a point and then including the resulting
ΣA into ΣX. There is a homotopy from g to f given by slowly expanding the
collapsed C̃X until it is mapped surjectively to ΣX and X ∪ C̃A is collapsed.

Thus the diagram gives us the following sequence

· · · K̃(Σ2A) K̃(ΣX/ΣA) K̃(ΣX) K̃(ΣA)

K̃(X/A) K̃(X) K̃(A)
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which is exact, since taking a map down and the composition of the next map
down with the corresponding map to the right is exactly a sequence as in Propo-
sition 2.31 (here we use that in a reduced mapping cone X ∪ C̃A the subspace
X is closed). Because of Lemma 1.18, we can replace the terms of the form
K̃(ΣkX/ΣkA) with K̃(Σk(X/A)).

The resulting long exact sequence is natural, since all constructions we ap-
plied to obtain it are.

We can now draw two corollaries from the existence of this long exact se-
quence.

Lemma 2.34. Let X and Y be pointed spaces. Then there is a natural group
isomorphism

K̃(X)⊕ K̃(Y )
∼=−−→ K̃(X ∨ Y )

given by the collapsing maps X ∨ Y → X and X ∨ Y → Y .

Proof. Consider the long exact sequence for the pair (X ∨ Y, Y ).

· · · −→ K̃(ΣY ) −→ K̃((X ∨ Y )/Y ) −→ K̃(X ∨ Y ) −→ K̃(Y )

The last map naturally splits via the map induced by X ∨ Y → Y given by
collapsing X to the basepoint and thus is surjective. The map K̃(ΣY ) →
K̃((X ∨ Y )/Y ) is given by the diagram

(X ∨ Y ) ∪ C̃Y (X ∨ Y )/Y

((X ∨ Y ) ∪ C̃Y ) ∪ C̃(X ∨ Y ) ΣY

f

q

and thus is zero, since a vector bundle pulled back along q ◦ f is trivial on
X ⊂ X ∨ C̃Y ∼= (X ∨ Y )∪ C̃Y (as this subset is collapsed by the map) and also
on C̃Y ⊂ X ∨ C̃Y because it is contractible. Here we used that (X ∨Y )∪ C̃Y ∼=
X ∨ C̃Y .

Hence the last three terms of the long exact sequence split off to form the
natural, naturally split short exact sequence

0 −→ K̃(X) −→ K̃(X ∨ Y ) −→ K̃(Y ) −→ 0

which gives us a natural isomorphism K̃(X)⊕K̃(Y ) ∼= K̃(X∨Y ) as claimed.

Lemma 2.35. Let X and Y be pointed spaces. There is a natural, naturally
split short exact sequence of groups

0 −→ K̃(X ∧ Y ) −→ K̃(X × Y ) −→ K̃(X)⊕ K̃(Y ) −→ 0

where the first map is induced by the quotient map and the second map by the
inclusions of X × {y0} and {x0} × Y into X × Y .
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We also obtain a natural group isomorphism

K̃(X ∧ Y )⊕ K̃(X)⊕ K̃(Y )
∼=−−→ K̃(X × Y )

given by the quotient map and the two projections. Furthermore, the composition
of its inverse with the projections onto K̃(X) respectively K̃(Y ) are given by the
inclusions of X × {y0} respectively {x0} × Y into X × Y .

Proof. We consider the end of the long exact sequence for the pair (X×Y,X∨Y )

K̃(Σ(X × Y )) K̃(Σ(X ∨ Y )) K̃(X ∧ Y ) K̃(X × Y ) K̃(X ∨ Y )

K̃(ΣX ∨ ΣY ) K̃(X)⊕ K̃(Y )

K̃(ΣX)⊕ K̃(ΣY )

∼= ∼=

∼=

where we use Lemma 1.17 and Lemma 2.34 for the isomorphisms.
The rightmost map splits (and thus is surjective) via

K̃(X)⊕ K̃(Y ) −→ K̃(X × Y )

(a, b) 7−→ pr∗X(a) + pr∗Y (b)

where prX and prY are the projections. This is a split since pr∗X(a) is trivial
on {x0} × Y , as prX({x0} × Y ) is a point, and analogously pr∗Y (b) is trivial on
X × {y0}.

The leftmost map is also surjectively split via

K̃(ΣX)⊕ K̃(ΣY ) −→ K̃(Σ(X × Y ))

(a, b) 7−→ (ΣprX)∗(a) + (ΣprY )
∗(b)

The reason is again that (ΣprX)(Σ({x0} × Y )) is Σ{x0} ⊆ ΣX, i.e. a point
(and analogously for Y ). Therefore the second map in the sequence is zero.

Hence the last three terms split off to form a split short exact sequence.
Since everything we did here is natural, the sequence and the split are also
natural.

2.9 Reduced external product and Bott Periodicity
We now want to define an external product K̃(X) ⊗ K̃(Y ) → K̃(X ∧ Y ). We
will derive it from the unreduced version using the results from Section 2.5.

Proposition 2.36. Let X and Y be pointed spaces. Then the external product
∗ : K(X) ⊗ K(Y ) → K(X × Y ) restricts (in a sense made precise in the proof
below) to a natural homomorphism of non-unital rings

? : K̃(X)⊗ K̃(Y ) → K̃(X ∧ Y )

Furthermore, for fixed pointed spaces X and Y , ? is an isomorphism if and only
if ∗ is.
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Proof. Consider the commutative diagram

K(X)⊗K(Y ) K(X × Y )

(K̃(X)⊕K(x0))⊗ (K̃(Y )⊕K(y0)) K̃(X × Y )⊕K((x0, y0))

K̃(X)⊗ K̃(Y ) K̃(X ∧ Y )

K̃(X)⊗K(y0) K̃(X)

K(x0)⊗ K̃(Y ) K̃(Y )

K(x0)⊗K(y0) K((x0, y0))

∗

∼= ∼=

∼= ∼=

⊕
∼=

⊕

⊕
∼=

⊕

⊕ ∼=
⊕

where the upper two vertical isomorphisms come from Lemma 2.18 and the
lower right vertical map is the isomorphism from Lemma 2.35. We will now
show that the four horizontal maps on the bottom actually exist in this form.

Since the images of K(x0) → K(X) and K(y0) → K(Y ) are exactly the
elements (Cn,Cm), subsequently taking the external product will also give us
exactly the elements of this form. Hence K(x0) ⊗ K(y0) → K(X × Y ) lands
isomorphically on the image of K((x0, y0)) in K(X × Y ). Thus the lowermost
map exists and is an isomorphism.

Under
K̃(X)⊗K(y0) −→ K(X)⊗K(Y )

∗−−→ K(X × Y )

K̃(X) ⊗ K(y0) maps isomorphically onto the ideal of elements of the form n ·
pr∗X(a) for a ∈ ker(K(X) → K(x0)) and n ∈ N0. This is also exactly the image
of K̃(X) in K(X × Y ). Hence the map third, and analogously second, from the
bottom exists as in the diagram and is an isomorphism.

Now, for the uppermost of the four lower maps, let

a ∈ K̃(X) = ker(K(X) → K(x0)) ⊂ K(X)

b ∈ K̃(Y ) = ker(K(Y ) → K(y0)) ⊂ K(Y )

Since the following diagram induced by inclusions (horizontal maps) and pro-
jections (vertical maps) commutes

K(X) K(x0) K(x0)

K(X × Y ) K({x0} × Y ) K({x0} × {y0})

pr∗X

we have that pr∗X(a) lies in K̃(X × Y ) and restricts to zero in K̃({x0} × Y ).
Since the analogue holds for pr∗Y (b), the external product a ∗ b = pr∗X(a)pr∗Y (b)
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lies in K̃(X × Y ) and restricts to zero in both K̃({x0} × Y ) and K̃(X × {y0}).
Hence the map K̃(X)⊗ K̃(Y ) → K̃(X ∧ Y ) exists as claimed (here we use that
the inverse of the isomorphism from Lemma 2.35 is, on the factors K̃({x0}×Y )

and K̃(X × {y0}), actually given by the maps induced by the inclusions). This
is the desired map ?.

Since K̃(X)⊗ K̃(Y ) → K(X)⊗K(Y ) and the composition

K̃(X ∧ Y )
q∗−−→ K̃(X × Y ) −→ K(X × Y )

are natural, injective maps of non-unital rings, the reduced external product ?
is a restriction of the unreduced version ∗ (which is natural) and hence itself a
natural homomorphism of non-unital rings.

From the diagram at the beginning of the proof also follows that ? is an
isomorphism if and only if ∗ is.

Lemma 2.37. Let X be a pointed space and ∆ the diagonal map X → X ∧X.
The composition

K̃(X)⊗ K̃(X)
?−−→ K̃(X ∧X)

∆∗

−−→ K̃(X)

is equal to the normal multiplication on K̃(X).

Proof. This follows from Lemma 2.25 and the fact that the diagram

K(X)⊗K(X) K(X ×X) K(X)

K̃(X)⊗ K̃(X) K̃(X ∧X) K̃(X)

∗ ∆∗

? ∆∗

commutes.

Recall that we denote the canonical line bundle over CP1 ∼= S2 by H. The
virtual bundle H − 1 ∈ K(S2) has virtual dimension 0 over any point x0. Thus
we can consider H−1 to be an element of K̃(S2). We can now prove the following
very important result about multiplication with this element.

Theorem 2.38 (Bott Periodicity). Let X be a pointed space. Then the map

β : K̃(X) −→ K̃(S2 ∧X) ∼= K̃(Σ2X), a 7−→ (H − 1) ? a

is a natural group isomorphism.

Proof. The map β is the composition

K̃(X) −→ K̃(S2)⊗ K̃(X)
?−−→ K̃(S2 ∧X)

where the first map is given by a 7→ (H − 1) ⊗ a. By Corollary 2.30, we
have K̃(S2) = Z〈H − 1〉 (with trivial multiplication), hence the first map is
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an isomorphism of groups. By Theorem 2.29 and again Corollary 2.30, the
multiplication K(S2) ⊗ K(X)

∗−→ K(S2 × X) is a ring isomorphism. Hence, by
Proposition 2.36, the second map in the composition above is an isomorphism
of non-unital rings. Both maps are natural, hence their composition is as well.

The natural homeomorphism S2 ∧ X ∼= Σ2X comes from the associativ-
ity of the smash product for compact Hausdorff spaces (see [Bro, 5.8.2]) and
Corollary 1.22.

2.10 Extending to a cohomology theory
Definition 2.39. Let (X,A) be a pair of pointed spaces with A ⊆ X closed
and n ≥ 0. We set

K̃−n(X) = K̃(ΣnX) and K̃−n(X,A) = K̃(Σn(X/A))

These are contravariant functors to abelian groups (even non-unital rings),
since they are a composition of K̃ and Σ, i.e. for f : X → Y the induced map is
f−n = (Σnf)∗ : K̃(ΣnY ) → K̃(ΣnX) and analogously for (X,A).

We write the natural long exact sequence from Proposition 2.33 in these
terms

K̃0(X) K̃0(A)

K̃−2(X) K̃−2(A) K̃−1(X,A) K̃−1(X) K̃−1(A)

K̃0(X,A) K̃0(X) K̃0(A)

β ∼= β∼=

The occurring square commutes by the naturality of β.

Definition 2.40. Let X be a pointed space. For k ≥ 0 we set

K̃2k(X) = K̃0(X) and K̃2k+1(X) = K̃−1(X)

and analogously for pairs.
By definition, these are contravariant functors to abelian groups, i.e. for

f : X → Y we set f2k = f0 and f2k+1 = f−1.

With this definition, the sequence above extends to the right to form the
standard, infinite in both directions, natural long exact sequence of a pair (for
the naturality we use again that β is natural). Since it is six-periodic, we obtain
the natural long exact circle (the diagram is not meant to be commutative)

K̃0(X,A) K̃0(X) K̃0(A)

K̃1(A) K̃1(X) K̃1(X,A)
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Definition 2.41. We set

K̃∗(X) = K̃0(X)⊕ K̃1(X) and K̃∗(X,A) = K̃0(X,A)⊕ K̃1(X,A)

These are contravariant functors to Z/2-graded abelian groups by setting, for
f : X → Y , f∗ = f0 ⊕ f1.

As for singular cohomology, we can define a product on the graded groups
K̃∗(X).

Proposition 2.42. There is a natural multiplication

K̃∗(X)⊗ K̃∗(X) −→ K̃∗(X)

restricting to the usual multiplication on K̃0(X). This makes K̃∗(X) into a
Z/2-graded non-unital ring which is graded commutative, i.e. ab = (−1)nmba

for a ∈ K̃n(X) and b ∈ K̃m(X).

Proof. We define a natural external product

? : K̃n(X)⊗ K̃m(Y ) −→ K̃n+m(X ∧ Y )

via the composition

K̃(Sn ∧X)⊗ K̃(Sm ∧ Y )
?−−→ K̃(Sn ∧X ∧ Sm ∧ Y ) ∼= K̃(Sn+m ∧X ∧ Y )

Here we use that the smash product is commutative and, for compact Hausdorff
spaces, associative up to the canonical homeomorphisms (see [Bro, 5.8.2] for the
associativity). The identification Sn ∧ Sm ∼= Sn+m comes from

Sn ∧ Sm = (Rn ∪ {∞}) ∧ (Rm ∪ {∞})
∼=−−→ (Rn+m ∪ {∞}) = Sn+m

given by [(x, y)] 7→ (x, y) for x ∈ Rn, y ∈ Rm and [(∞,∞)] 7→ ∞, which is a
homeomorphism by Lemma 1.21. This definition of ? restricts to our previous
instance of ? for n = m = 0.

From this and the isomorphism β, we obtain a multiplication on K̃∗(X) via

K̃n(X)⊗ K̃m(X)
?−−→ K̃n+m(X ∧X)

∆∗

−−→ K̃n+m(X)

where ∆: X → X ∧X is the diagonal map. By Lemma 2.37, this extends the
normal multiplication of K̃0(X) = K̃(X).
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For the graded commutativity consider the diagram

K̃(Sn ∧X)⊗ K̃(Sm ∧X) K̃(Sm ∧X)⊗ K̃(Sn ∧X)

K̃((Sn ∧X) ∧ (Sm ∧X)) K̃((Sm ∧X) ∧ (Sn ∧X))

K̃((Sn ∧ Sm) ∧ (X ∧X)) K̃((Sm ∧ Sn) ∧ (X ∧X))

K̃((Sn ∧ Sm) ∧X) K̃((Sm ∧ Sn) ∧X)

K̃(Sn+m ∧X) K̃(Sn+m ∧X)

? ?

τ∗

∼= ∼=

(τ∧τ)∗

(id∧∆)∗ (id∧∆)∗

(τ∧id)∗

∼= ∼=

where the uppermost horizontal map is given by switching the two factors of
the tensor product and τ : Y ∧ Z → Z ∧ Y is always the map exchanging the
two corresponding factors.

The lower two squares commute since they already do so on the level of
spaces. For the uppermost square consider the corresponding unreduced dia-
gram (in the general case)

K(Y )⊗K(Z) K(Z)⊗K(Y )

K(Y × Z) K(Z × Y )

∗ ∗

τ∗

It commutes since

τ∗
((

prY×Z
Y

)∗
(a) ·

(
prY×Z

Z

)∗
(b)

)
=

(
prZ×Y

Z

)∗
(b) ·

(
prZ×Y

Y

)∗
(a)

as prY×Z
i ◦ τ = prZ×Y

i for i ∈ {Y, Z}. Since the reduced square is just a
restriction of this one, it also commutes.

It remains to show that the map K̃(Sn+m ∧ X) → K̃(Sn+m ∧ X) given by
multiplication with (−1)nm makes the large diagram commute. This holds when
n = 0 or m = 0 since, in this case, the diagram

Sn ∧ Sm Sm ∧ Sn

Sn+m Sn+m

τ

id

commutes. If n = m = 1, the map Sn ∧ Sm → Sm ∧ Sn switching the two
factors corresponds to exchanging the two coordinates of R2 in S2 = R2 ∪ {∗},
i.e. reflecting across an equator of S2. The next lemma finishes the proof.

29



Lemma 2.43. Let r : S2 → S2 be the reflection across an equator. Then the
map (r ∧ id)∗ : K̃(S2 ∧X) → K̃(S2 ∧X) is given by multiplication with −1.

Proof. Consider the commutative diagram

K̃(S2)⊗ K̃(X) K̃(S2)⊗ K̃(X)

K̃(S2 ∧X) K̃(S2 ∧X)

r∗⊗ id

? ?

(r∧id)∗

The vertical maps are isomorphisms by Bott Periodicity. Hence it is enough to
show that r∗ : K̃(S2) → K̃(S2) is multiplication with −1. This is equivalent to
[E] + [r∗E] = [C0], i.e. E ⊕ r∗E ∼ C0, for all vector bundles E over S2.

As in the proof of Lemma 2.27, we consider a clutching function f : S1 →
GLn(C) corresponding to E. Choosing the S1 to be the equator along which
r reflects, we see that r∗E corresponds to the clutching function i ◦ f , where
i : GLn(C) → GLn(C) is given by A 7→ A−1.

Now, by Lemma 2.28, we have

f ⊕ (i ◦ f) ' (f · (i ◦ f))⊕ const1n = const1n⊕ const1n = const12n

and hence E ⊕ r∗E ∼= C2n.

Now, at the end of this section, we do the following computation which we
will need later.

Lemma 2.44. If X is a pointed finite CW-complex with only even-dimensional
cells, then we have K̃2n+1(X) ∼= 0 for any n ∈ Z.

Proof. We prove this by induction on the number of cells. The statement is
clear for X = pt, as K̃2n+1(pt) = K̃(S1) ∼= 0, by Lemma 2.5.

Now let X = X ′ ∪f D2n. From the long exact sequence of the pair (X,X ′)
we obtain the following exact sequence

K̃2n+1(X,X ′) −→ K̃2n+1(X) −→ K̃2n+1(X ′)

The group on the right is trivial by the induction hypothesis. Since, by Bott
Periodicity and again Lemma 2.5, we also have

K̃2n+1(X,X ′) = K̃(Σ(X/X ′)) ∼= K̃(S2n+1) ∼= K̃(S1) ∼= 0

the middle term is trivial as well.

2.11 Outlook
To see that the theory we developed over the last section is actually useful, we
state here some of the classical main applications. The first one is the Hopf
Invariant One Problem.
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Theorem 2.45. There exists a map S4n−1 → S2n only if n ∈ {1, 2, 4}.

This is [HaK, Theorem 2.19]. It is proven by endowing the rings K(X) with
even more structure, coming from exterior powers of vector bundles. From this
one derives some algebraic relations which, after applying a little bit of simple
number theory, yield the stated result.

From this one can then deduce the following.

Theorem 2.46. The following two statements are only true for n ∈ {1, 2, 4, 8}:

1. Rn is a division algebra.

2. Sn−1 is parallelizable, i.e. its tangent bundle is trivial.

This is [HaK, Theorem 2.16].

3 Foundations from stable homotopy theory
In the next section we will need some language from stable homotopy theory,
mainly spectra and their associated (co)homology theories, but also related
concepts. This is what this section focuses on. We will mostly follow the book
by Switzer [Sw] and, in the beginning, the book by Adams [Ad] (the main
difference being that Switzer does not introduce sequential spectra). For a
newer work treating this, see the book by Rudyak [Ru], though he omits quite
a few proofs, referencing Switzer.

Note that we will prove hardly anything in this section, instead focusing on
introducing the needed concepts. For the most relevant statements references
are given, but in most definitions and side remarks there will also be things to
check. For those we refer to the books named above.

3.1 Sequential spectra
Definition 3.1. A sequential spectrum is a sequence of pointed spaces E =
(En)n∈Z (the component spaces) together with pointed maps εn : ΣEn → En+1

for n ∈ Z (the structure maps).
A map of sequential spectra f : E → E′ is a sequence of pointed maps

(fn : En → E′
n)n∈Z such that they commute with the structure maps, i.e. we

have the following commuting diagram for each n ∈ Z

ΣEn Xn+1

ΣE′
n Yn+1

εn

fn fn+1

ε′n

We denote the category of sequential spectra with maps of sequential spectra
by SeqSpec.
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Definition 3.2. An Ω-spectrum is a sequential spectrum E such the the maps
En → ΩEn+1, given as the adjuncts of the structure maps σn under the adjunc-
tion of reduced suspension and loop space, are weak homotopy equivalences.

Definition 3.3. There is a covariant functor Σ∞ : Top∗ → SeqSpec from
pointed spaces to sequential spectra given on objects by

(Σ∞X)n =

{
ΣnX n ≥ 0

pt n < 0

εn =

{
id : Σ(ΣnX) → Σn+1X n ≥ 0

const : Σpt ∼= pt → (Σ∞X)n+1 n < 0

and on functions f : X → Y by

(Σ∞f)n = Σnf : ΣnX → ΣnY

We call Σ∞X the suspension spectrum of X.

Definition 3.4. We set S = Σ∞S0, the sphere spectrum. Hence Sn ∼= Sn for
n ≥ 0 and Sn ∼= pt for n < 0.

Definition 3.5. For a sequential spectrum E and k ∈ Z define the sequential
spectrum ΣkE by (ΣkE)n = En+k with structure maps also shifted by k. This
gives us a functor Σk : SeqSpec → SeqSpec for each k ∈ Z. If k = 1, we write
just Σ = Σ1.

The functor Σ : SeqSpec → SeqSpec is invertible, with inverse given by
Σ−1.

3.2 CW-spectra
Definition 3.6. A CW-spectrum is a sequential spectrum E such that each
component space En is a pointed CW-complex and such that the structure
maps εn : ΣEn → En+1 are inclusions of subcomplexes.

For a pointed CW-complex X its suspension spectrum Σ∞X is a CW-
spectrum, in particular S = Σ∞S0. Similarly, if E is a CW-spectrum, then
the ΣkE are again CW-spectra.

From now on we will only work with CW-spectra. Since not all naturally
arising spectra are CW-spectra, we need the following result. It tells us that we
are not significantly limiting ourselves when restricting to CW-spectra.

Proposition 3.7. Let E be a sequential spectrum. Then there is a CW-spectrum
E′ and a map of sequential spectra f : E′ → E such that fn : E′

n → En is a
homotopy equivalence for all n ∈ Z.

This statement can be found in [Ru, II, Lemma-Definition 1.19].
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Definition 3.8. For a CW-spectrum E and a pointed CW-complex X, define
the CW-spectrum E ∧X by (E ∧X)n = En ∧X (we have to be a little careful
with the topology, see Remark 1.7) with structure maps

Σ(En ∧X) = (ΣEn) ∧X
εn∧id−−−−→ En+1 ∧X

We obtain a functor ∧ : CWSpec × CW∗ → CWSpec by sending (f : E →
F, g : X → Y ) to fn ∧ g : En ∧X → Fn ∧ Y .

We have, for example, that S ∧X ∼= Σ∞X.

Definition 3.9. For a family of CW-spectra (Ei)i∈I define their wedge sum∨
i∈I Ei as having n-th component

∨
i∈I(Ei)n and structure maps

Σ
∨
i∈I

(Ei)n ∼=
∨
i∈I

Σ(Ei)n

∨
i∈I ε

Ei
n−−−−−−→

∨
i∈I

(Ei)n+1

We have that Σ∞X ∨Σ∞Y ∼= Σ∞(X ∨ Y ), since there is a homeomorphism
Σ(X ∨ Y ) ∼= ΣX ∨ ΣY .

Definition 3.10. A CW-subspectrum of a CW-spectrum E is a CW-spectrum
E′ together with a map of sequential spectra ι : E′ → E such that ιn : E′

n → En

is the inclusion of a subcomplex for all n ∈ Z.
A CW-subspectrum E′ ⊆ E is cofinal if, for all n ∈ Z and each cell of En,

some E′
n+k contains a suspension of that cell.

Definition 3.11. Let E and F be two CW-spectra. We say that two maps of
sequential spectra f ′ : E′ → F and f ′′ : E′′ → F , where E′, E′′ ⊆ E are cofinal
CW-subspectra, are equivalent if they agree on E′∩E′′ (which is again a cofinal
CW-subspectrum).

A CW-map is an equivalence class of such maps. We write CWSpec for
the category of CW-spectra with CW-maps.

One has to be a little careful when defining composition, in that the image
of a representative of the first map does not necessarily have to lie in the cofinal
subspectrum on which a representative of the second map is defined. But this
can be fixed by restricting to a smaller cofinal subspectrum in the domain of
the first map.

Definition 3.12. A homotopy between two CW-maps f0, f1 : E → F is a CW-
map E∧ [0, 1]+ → F such that F ◦ι0 = f0 and F ◦ι1 = f1, where ι0 : E∧{0}+ →
E ∧ [0, 1]+ and ι1 : E ∧ {1}+ → E ∧ [0, 1]+ are induced by the inclusions.

We write HoSpec for the category of CW-spectra with CW-maps up to
homotopy. We have a functor CWSpec → HoSpec sending a CW-spectrum
to itself and a CW-map to its equivalence class up to homotopy.

By composing with the functor to HoSpec, we can consider the suspension
spectrum also as a functor Σ∞ : CW∗ → HoSpec.
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The functors ∧ and Σk descend to functors ∧ : HoSpec×CW∗ → HoSpec
and Σ : HoSpec → HoSpec, i.e. if E and F are CW-spectra, X is a pointed
CW-complex, and two CW-maps E → F are homotopic, then the induced maps
E ∧X → F ∧X respectively ΣkX → ΣkY are again homotopic.

Proposition 3.13. The wedge sum of CW-spectra constitutes the coproduct in
the category HoSpec.

This can be found in [Sw, Proposition 8.18].

Definition 3.14. For E and F two CW-spectra, we write [E,F ] for the set of
CW-maps E → F up to homotopy.

Proposition 3.15. There is a natural bijection

[E,F ] ∼= [E ∧ S1, F ∧ S1]

where E,F ∈ CWSpec.
From this we get, via the pinching map S2 → S2 ∨ S2, an abelian group

structure on [E,F ] ∼= [E ∧ S2, F ∧ S2] such that composition is bilinear.

This is [Sw, Corollary 8.27].

Definition 3.16. For a CW-spectrum E we set πnE = [ΣnS, E], the stable
homotopy groups of E. We obtain a functor π∗ : CWSpec → AbZ from CW-
spectra to graded abelian groups.

Remark 3.17. Another, often used, definition is to set πnE = colimk πn+k(Ek)
where the colimit runs over maps

πn+k(Ek)
Σ−−→ πn+k+1(ΣEk)

(εk)∗−−−→ πn+k+1(Ek+1)

This is equivalent to the one we stated (cf. [Sw, 8.21]).
The following two lemmas will be useful later.

Lemma 3.18. For E ∈ CWSpec there is a natural homotopy equivalence
ΣE ' E ∧ S1.

This is [Sw, Theorem 8.26].

Lemma 3.19. Let X be a pointed CW-complex. Then there is a homotopy
equivalence Σ∞X+ ' Σ∞(X ∨ S0) ∼= Σ∞X ∨ S. Here X+ and X ∨ S0 are
homeomorphic CW-complexes, but the first has as basepoint the extra point +
and the second the basepoint of X.

Proof. Both Σ(X+) and Σ(X ∨ S0) are quotients of the unreduced suspension
SX+ (which does not depend on the basepoint). By Lemma 1.12, we have that
both quotient maps are homotopy equivalences, as X+ and X ∨ S0 are CW-
complexes and hence well-pointed. Thus Σ(X+) ' Σ(X ∨S0) as spaces and, by
Lemma 1.14, they are also homotopy equivalent relative to the basepoints.
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3.3 Generalized (co)homology
Definition 3.20. A generalized reduced homology theory is a covariant, ho-
motopy invariant functor h̃∗ : CW∗ → AbZ from pointed CW-complexes to
(Z-)graded abelian groups together with a sequence of natural isomorphisms
σn : h̃n ⇒ h̃n+1 ◦ Σ for n ∈ Z (the suspension isomorphisms) such that for
inclusions of subcomplexes of pointed CW-complexes ι : A → X the following
induced sequence is exact

h̃∗A h̃∗X h̃∗(X/A)
ι∗ q∗

where q : X → X/A is the quotient map.
A generalized reduced homology theory is said to be additive if the canonical

map
⊕

i∈I h̃∗Xi → h̃∗
(∨

i∈I Xi

)
, induced by the inclusions Xi →

∨
i∈I Xi, is an

isomorphism for all families of pointed CW-complexes (Xi)i∈I .
A map of generalized reduced homology theories is a natural transformation

η : h̃∗ ⇒ g̃∗ such that it commutes with the suspension isomorphisms.

Definition 3.21. We can associate to a CW-spectrum E a generalized reduced
homology theory Ẽ∗ by setting ẼnX = πn(E ∧X) = [ΣnS, E ∧X] and

σn : [Σ
nS, E ∧X] ∼= [ΣΣnS,ΣE ∧X] ∼= [Σn+1S, E ∧ ΣX]

where the first isomorphism comes from invertibility of Σ and the second from
Lemma 3.18. The functoriality is given by sending f : X → Y to composition
with the map id ∧ f : E ∧X → E ∧ Y .

Generalized reduced homology theories obtained in this way are additive (cf.
[Sw, Corollary 8.36]).

This construction is functorial in E ∈ CWSpec. A CW-map f : E → F
induces a map of generalized reduced homology theories Ẽ∗ ⇒ F̃∗ by composing
with f ∧ id.

Definition 3.22. For E = S we obtain S̃∗X = π∗(Σ
∞X), i.e. taking the stable

homotopy groups of the suspension spectrum forms a generalized reduced ho-
mology theory. We will denote it by πs

∗X and call πs
nX the n-th stable homotopy

group of X.

A homotopy equivalence of CW-spectra induces an isomorphism of gener-
alized reduced homology theories, hence this construction is also functorial in
E ∈ HoSpec.

Definition 3.23. A generalized reduced cohomology theory is a contravariant,
homotopy invariant functor h̃∗ : CWop

∗ → AbZ from pointed CW-complexes
to (Z-)graded abelian groups together with a sequence of natural isomorphisms
σn : h̃n+1 ◦ Σ ⇒ h̃n for n ∈ Z (the suspension isomorphisms) such that for
inclusions of subcomplexes of pointed CW-complexes ι : A → X the following
induced sequence is exact

h̃∗(X/A) h̃∗X h̃∗A
q∗ ι∗
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where q : X → X/A is the quotient map.
A generalized reduced cohomology theory is said to be additive if the canon-

ical map h̃∗
(∨

i∈I Xi

)
→

∏
i∈I h̃

∗Xi, induced by the inclusions Xi →
∨

i∈I Xi,
is an isomorphism for all families of pointed CW-complexes (Xi)i∈I .

A map of generalized reduced cohomology theories is a natural transformation
η : h̃∗ ⇒ g̃∗ such that it commutes with the suspension isomorphisms.

Definition 3.24. A CW-spectrum E represents a generalized reduced coho-
mology theory Ẽ∗ by setting ẼnX = [Σ∞X,ΣnE] and

σn : [Σ∞ΣX,Σn+1E] ∼= [ΣΣ∞X,Σn+1E] ∼= [Σ∞X,ΣnE]

using that Σ∞ΣX is cofinal in ΣΣ∞X and the invertibility of Σ. The functorial-
ity is given by sending f : X → Y to precomposition with Σ∞f : Σ∞X → Σ∞Y .

Generalized reduced cohomology theories obtained in this way are additive
(cf. [Sw, p. 146]).

This construction is functorial in E ∈ CWSpec. A CW-map f : E →
F gives us a map of generalized reduced cohomology theories Ẽ∗ ⇒ F̃ ∗ by
composing with Σnf .

Similarly to homology, we have that a homotopy equivalence of CW-spectra
induces an isomorphism of generalized reduced cohomology theories, hence we
have a construction also functorial in E ∈ HoSpec.

If E is an Ω-spectrum, there is a natural (in X) bijection ẼnX ∼= [X,En]
(cf. [Sw, Theorem 8.42]).

The following is one of the main motivations for studying spectra. It gives
us an equivalence between Ω-spectra and cohomology theories.

Theorem 3.25 (Brown Representability). Every additive generalized reduced
cohomology theory h̃∗ is, up to isomorphism, represented by an Ω-spectrum E.

A proof can be found in [Sw, Theorem 9.27].

3.4 Monoidal categories and the smash product of spectra
We will now introduce some general categorical notions that will help us to
formulate statement we will need further down the line.

Definition 3.26. A monoidal category is a category C together with a functor
⊗ : C×C → C, an object 1 ∈ C and three natural isomorphisms corresponding to
associativity of ⊗ as well as left respectively right unitality of 1. Furthermore
these natural isomorphisms have to fulfill certain coherence conditions, i.e. a
number of diagrams built from them one would want to commute actually do
commute. We will not state them here. They can be found in [Ma, XI.1].

A monoidal category is symmetric if there is additionally a natural isomor-
phism corresponding to commutativity of ⊗ such that a further three diagrams
commute. They can again be found in [Ma, XI.1].
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Examples include (hCW,×,pt) and (hCW∗,∧,S0) which will appear again
later. They are both even symmetric monoidal categories.

Definition 3.27. A monoid in a monoidal category C is an object M ∈ C
together with two morphisms µ : M ⊗M →M and i : 1 →M such that the two
diagrams

M ⊗ (M ⊗M) (M ⊗M)⊗M

M ⊗M M M ⊗M

∼=

id⊗µ µ⊗id

µ µ

and
1⊗M M ⊗M M ⊗ 1

M

i⊗id

∼=
µ

id⊗i

∼=

commute.
A monoid M in a symmetric monoidal category is commutative if in addition

the following diagram commutes

M ⊗M M ⊗M

M

∼=
c

µ µ

where c is the natural isomorphism corresponding to commutativity of ⊗.
A map between two monoids M and N in a monoidal category C is a mor-

phism f : M →M ′ such that the following two diagrams commute

M ⊗M M S

N ⊗N N M N

µM

f⊗f f
iM iN

µN f

We obtain, for every monoidal category C, a category MonC with objects
the monoids in C and morphisms given by maps of monoids.

Definition 3.28. Let (C,⊗C , 1C) and (D,⊗D, 1D) be two monoidal categories.
A (lax) monoidal functor between C and D is a functor F : C → D together with
a natural transformation φ : FA⊗D FB → F (A⊗C B) (of functors C × C → D)
and a morphism ε : 1D → F (1C) such that φ and ε are compatible with the
natural isomorphisms coming with C and D. For a precise statement regarding
the diagrams that have to commute we again refer to [Ma, XI.2].

A strong monoidal functor is a lax monoidal functor such that the natural
transformation φ and the morphism ε are isomorphisms.

A monoidal functor F : C → D induces a functor MonC → MonD which we
denote by Mon(F ).
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An example for a strong monoidal functor is (−)+ : hCW → hCW∗.
The following statement will later be useful.

Proposition 3.29. Let L : C → D and R : D → C be two functors between two
monoidal categories. Also let L a R be an adjunction. If L is strong monoidal,
then it induces the structure of a monoidal functor on R and the adjunction lifts
to an adjunction Mon(L) a Mon(R) of functors between the categories MonC
and MonD.

This is a special case of so called doctrinal adjunction [Ke].
We can now formulate the following proposition, which is one of the most

important facts about spectra.

Proposition 3.30. The category HoSpec is a symmetric monoidal category,
i.e. there is a functor ∧ : HoSpec×HoSpec → HoSpec satisfying the condi-
tions from Definition 3.26. The unit element is the sphere spectrum S. Moreover
we have

1. For X ∈ CW∗ and E ∈ HoSpec there is a natural isomorphism

E ∧X ' E ∧ Σ∞X

In particular, this gives us a natural isomorphism

Σ∞(X ∧ Y ) ∼= (Σ∞X) ∧ Y ' Σ∞X ∧ Σ∞Y

Hence Σ∞ is a strong monoidal functor.

2. For E,F ∈ HoSpec there are natural isomorphisms

ΣE ∧ F ' Σ(E ∧ F ) ' E ∧ ΣF

The construction can be found in [Ad, III, Theorem 4.1] or [Sw, p. 254ff.
and Theorem 13.40]. Properties 1 and 2 are [Sw, Corollary 13.39] and [Sw,
Proposition 13.46] respectively.

This monoidal structure will allow us the definitions and statements in the
following subsection. But first we state the following proposition, which gives
us a right adjoint to the functor Σ∞.

Proposition 3.31. There is a functor Ω∞ : HoSpec → hCW∗ such that
there is, for X ∈ hCW∗ and E ∈ HoSpec, a natural bijection [Σ∞X,E] ∼=
[X,Ω∞E]∗, where [−,−]∗ denotes the set of equivalence classes of pointed maps
up to basepoint preserving homotopy. In other words, there is an adjunction
Σ∞ a Ω∞.

Furthermore, if E is an Ω-spectrum, we have Ω∞E ' E0, i.e. it is just given
by taking the zeroth component.

This is almost exactly [Ru, II, Proposition-Definition 3.27 and Corollary
3.29], though we need to combine it with the fact that homotopy equivalences
of CW-spectra induce isomorphisms of cohomology theories.
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3.5 Ring spectra and products
We want to be able to define products on (co)homology theories associated to
a spectrum. For this we need the following notion.

Definition 3.32. A ring spectrum is a monoid in the symmetric monoidal
category (HoSpec,∧). It is commutative if it is a commutative monoid.

Proposition 3.33. Let E ∈ HoSpec be a ring spectrum with multiplication
µ : E ∧ E → E and identity i : S → E.

1. We get a natural associative bilinear product

∧ : ẼnX ⊗ ẼmY −→ Ẽn+m(X ∧ Y )

by setting, for f : ΣnS → E ∧X and g : ΣmS → E ∧X,

f ∧ g : Σn+mS ' ΣnS ∧ ΣmS f∧g−−−→ (E ∧X) ∧ (E ∧ Y )

' (E ∧ E) ∧ (X ∧ Y )
µ∧id−−−→ E ∧ (X ∧ Y )

If E is a commutative ring spectrum, ∧ is graded commutative in the sense
that, for x ∈ ẼnX and y ∈ ẼmY , we have τ∗(x∧ y) = (−1)nmy∧x, where
τ : X ∧ Y → Y ∧X is the map switching the two factors.

2. From the previous statement, we obtain, for X = S0, a product

Ẽn(S
0)⊗ Ẽm(S0) −→ Ẽn+m(S0 ∧ S0) ∼= Ẽn+m(S0)

This multiplication has a unit element in Ẽ0(S
0) = [S, E∧S0] given by the

identity i : S → E.
Since Ẽn(S

0) = [ΣnS, E ∧S0] ∼= πnE, this makes π∗E into a unital graded
ring, which is graded commutative if E is a commutative ring spectrum.

3. We also obtain a natural associative bilinear product

∧ : ẼnX ⊗ ẼmY −→ Ẽn+m(X ∧ Y )

by setting, for f : Σ∞X → ΣnE and g : Σ∞Y → ΣmE,

f ∧ g : Σ∞(X ∧ Y ) ' Σ∞X ∧ Σ∞Y
f∧g−−−→ ΣnE ∧ ΣmE

' Σn+m(E ∧ E)
Σn+mµ−−−−−→ Σn+mE

From this we also get an internal multiplication

∪ : ẼnX ⊗ ẼmX → Ẽn+mX

by composing ∧ with the map ∆∗, induced by the diagonal ∆: X → X∧X.
If E is a commutative ring spectrum, ∧ and ∪ are graded commutative
(for ∧ this is meant in the same sense as for homology). Hence, in this
case, Ẽ∗X becomes a non-unital graded ring which is graded commutative.
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4. In addition, we can give Ẽ∗X the structure of a graded left π−∗E-module
by considering π−nE = [Σ−nS, E] ∼= [Σ∞S0,ΣnE] = Ẽn(S0) and using
the external multiplication ∧ from the previous item.
By definition, this is compatible with the multiplication on Ẽ∗X, in the
sense that

(s ∧ x) ∪ y = s ∧ (x ∪ y) = (−1)nmx ∪ (s ∧ y)

for s ∈ π−nE, x ∈ ẼmX and y ∈ Ẽ∗X, where the second equality only
holds if E is a ring spectrum.

All of these products are natural with respect to maps of (commutative) ring
spectra.

These statements can be found in [Sw, p. 270ff.].

3.6 The K-Theory spectrum
Definition 3.34. Denote by U(n) the unitary group of degree n. Set U =
colimn U(n) where the colimit is taken over the inclusions ιn : U(n) → U(n+1),
given by

A 7→
(
A 0
0 1

)
In the following, the basepoint of BU × Z is some 0-cell in the component

BU× {0}.

Proposition 3.35. There are homotopy equivalences Ω(BU × Z) ' U and
ΩU ' BU× Z.

This is [AGP, Corollary B.2.6 and Theorem B.2.7].

Definition 3.36. Denote by KU the Ω-spectrum given by KUn = BU×Z for n
even, KUn = U for n odd and with structure maps the adjuncts of the homotopy
equivalences from the previous proposition (to be more precise, we first replace
it by a CW-spectrum; see Proposition 3.7).

Proposition 3.37. For finite CW-complexes the spectrum KU represents re-
duced K-theory K̃∗ from Section 2.

Furthermore KU has the structure of a commutative ring spectrum such that
its multiplication induces the product ? on K̃.

The first part can be found in [Sw, p. 216], the second part in [Sw, p. 300ff.].
Since KU is an Ω-spectrum, we have, for finite pointed CW-complexes X, a
natural bijection ϕ : [X,BU × Z]

∼=−→ K̃(X). We will now describe it. The idea
is that BU classifies vector bundles up to stable isomorphism and Z classifies
their virtual dimension. Let f be a representative of an element of [X,BU×Z].

First, to see what is happening, assume X to be connected and thus that
its image lies in BU × {0}. Since X is finite, hence compact, its image lies
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only in finitely many cells. Thus there exists n ∈ N0 such that X lands in
BU(n)×{0} ⊂ BU×{0}. Over this BU(n) we have the canonical n-dimensional
vector bundle γn. Pulling it back, we obtain a vector bundle f∗γn over X. Now
ϕ(f) is the equivalence class of f∗γn in K̃(X).

In the case that X is not connected, we need to remember that K̃(X) ∼=
ker(K(X) → Z), where K(X) → Z is given by the virtual dimension over
the connected component of the basepoint. The image of f still lies in some
BU(n) × Z, so we can consider the pullback bundle E = f∗(γn × Z). For each
connected component of Xi ⊂ X, we then subtract from E the bundle Fi which
is trivial with dimension prZ(f(Xi)) over Xi and trivial with dimension 0 over
X \Xi. Hence we obtain a bundle over X, which has virtual dimension k over a
connected component if its image under f is contained in BU×{k}. In particular
it has virtual dimension 0 over the connected component of the basepoint. Thus
it lies in K̃(X) and it makes sense to say that ϕ(f) is that bundle.

Note that, in the case that X is connected, the latter construction gives us
the first one.

3.7 Associated cohomology theories of H-spaces
Definition 3.38. A homotopy associative H-space is a monoid in (hCW,×).
A homotopy associative H-space is homotopy commutative if it is a commutative
monoid.

For Y a homotopy commutative and homotopy associative H-space, Σ∞Y+
becomes a commutative ring spectrum via

µ : Σ∞Y+ ∧ Σ∞Y+ ' Σ∞(Y+ ∧ Y+) ∼= Σ∞(Y × Y )+
m+−−→ Σ∞Y+

i : S = Σ∞S0
Σ∞(conste)+−−−−−−−−→ Σ∞Y+

where we consider S0 = pt+. We use that, by definition of the smash product,
there is a homeomorphism Y+∧Y+ ∼= (Y ×Y )+. This is the strong monoidalness
of Σ∞ ◦ (−)+ written out.

Hence ˜(Σ∞Y+)
∗X is a non-unital graded ring which is graded commutative.

It is also, in a compatible way, a module over π∗(Σ∞Y+) = πs
∗(Y+).

Proposition 3.39. Let CP∞ be the infinite complex projective space, i.e. the
space BU(1) classifying complex line bundles. Also let γ be the universal line
bundle over CP∞. Then the map m : CP∞×CP∞ → CP∞ classifying the tensor
product pr∗1(γ)⊗pr∗2(γ) together with an arbitrary element e ∈ CP∞ make CP∞

into a commutative H-space.

Proof. We need to show that the diagrams from Definition 3.38 commute up to
homotopy. We will derive this from the corresponding properties of the tensor
product of vector bundles.

Since (conste, id)∗(pr∗1(γ)⊗pr∗2(γ))
∼= C1⊗γ, the mapm◦(conste, id) classifies

γ and hence is homotopic to the identity (as the identity also classifies γ). The
analog holds for (id, conste).
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Similarly, we have that the tensor product is associative and hence that the
maps m ◦ (id×m) and m ◦ (m× id) classify isomorphic bundles. Thus they are
homotopic.

Again, in the same vein, τ∗(pr∗1(γ) ⊗ pr∗2(γ))
∼= pr∗1(γ) ⊗ pr∗2(γ) and hence

m ◦ τ ' m.

This makes ˜(Σ∞CP∞
+ )∗(X) into a non-unital graded ring and a πs

∗(CP∞
+ )-

module.

4 Snaith’s Theorem
In this section we describe an alternative way to obtain K-theory, based on
CP∞. Since CP∞ classifies complex line bundles, we could also say that, in
some sense, we will obtain K-theory from those.

We first need to collect a variety of well-known results from algebraic topol-
ogy that we will use. Subsequently we will formulate Snaith’s theorem and then
prove (parts of) it, using as main input two results, one of Snaith himself [Sn]
and one of Segal [Se].

4.1 Collection of general tools
The following is a powerful tool for computing generalized homology groups
(there is also a version for cohomology but we will not need it). We will use it
to compute rational stable homotopy groups.

Proposition 4.1 (Atiyah–Hirzebruch Spectral Sequence). Let h̃∗ be a general-
ized reduced homology theory such that h̃n(S0) is bounded below (i.e. there exists
n ∈ Z such that h̃k(S0) = 0 for k ≤ n). Also let X be a CW-complex. If h̃∗ is
additive or X is finite, then we have a natural homology spectral sequence

E2
p,q = Hp(X; h̃q(S

0)) ⇒ h̃p+q(X+)

This is proven in [Ko, Theorem 4.2.5].
The next statement is the analog of the Künneth and Universal Coefficient

Theorems for the left exact functor lim.

Proposition 4.2 (Milnor exact sequence). Let h̃∗ be an additive generalized
reduced cohomology theory, X a CW-complex, and (Xn)n∈N0 an ascending se-
quence of subcomplexes such that their union is all of X. Then, for any k ∈ Z,
there is a short exact sequence of abelian groups

0 −→ lim
n

1 h̃k−1(Xn) −→ h̃k(X) −→ lim
n
h̃k(Xn) −→ 0

where the third map is induced by the inclusions Xn → X.

This can be found in [HaAT, Theorem 3F.8]. The only fact we will need
about lim1 is that it is zero if all of the groups it has as input are zero.
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Corollary 4.3. Let X be a CW-complex and (Xn)n∈N0 an ascending sequence
of finite subcomplexes such that their union is all of X. If X has only cells of
even dimension, then the natural map

K̃U0(X) −→ lim
n

K̃U0(Xn)

given by the inclusions Xn → X, is an isomorphism of groups.

Proof. Consider the Milnor exact sequence

0 −→ lim
n

1 K̃U−1(Xn) −→ K̃U0(X) −→ lim
n

K̃U0(Xn) −→ 0

Since Xn is finite, we have K̃U−1(Xn) ∼= K̃−1(Xn) which is trivial by a compu-
tation we did in Section 2, see Lemma 2.44.

Definition 4.4. Write MU for the complex Thom spectrum.

We will not actually need to know how MU is defined, only some statements
about it. One of them is the following classical result.

Proposition 4.5. We have π∗(MU) ∼= Z[x1, x2, . . . ] with xi living in degree 2i.

This can be found in [Ra, Theorem 3.1.5].
The last thing in this subsection is a statement about generalized coho-

mology, roughly corresponding to the uniqueness of singular cohomology on
CW-complexes.

Proposition 4.6. Let h̃∗ and g̃∗ be additive generalized reduced cohomology
theories and η : h̃∗ ⇒ g̃∗ a map. If ηS0 : h̃∗(S0) → g̃∗(S0) is an isomorphism,
then ηX : h̃∗X → g̃∗X is an isomorphism for all finite dimensional pointed
CW-complexes X.

This is a special case of [Sw, Theorem 7.67].

4.2 Statement of the theorem
Consider the pointed map φ : CP∞

+ → BU × Z given by the inclusion CP∞ '
BU(1) → BU×{1} and sending + to the basepoint (∗, 0). We know that KU is a
Ω-spectrum. Hence, by Proposition 3.31, Ω∞KU ' BU×Z and we obtain, from
φ, a map Φ: Σ∞CP∞

+ → KU. We want to see that it is a map of (commutative)
ring spectra.

We can describe the classifying space BU as the colimit over the complex
Grassmannians (Grn,k)n≤k with maps the inclusions

in,k : Grn,k −→ Grn,k+1, W 7−→W ⊕ 0
jn,k : Grn,k −→ Grn+1,k+1, W 7−→ C ⊕W

(see e.g. [AGP, p. 438f.]). In particular we have BU ∼= colimn Grn,2n−1, where
the colimit is taken over the maps

ιn : in+1,2n ◦ jn,2n−1 : Grn,2n−1 → Grn+1,2n+1

43



since this is cofinal in the larger diagram. Also note that CP∞ ∼= colimn Gr1,n
taken over the inclusions i1,n.

Let the pointed map φ : CP∞
+ → BU× Z be given by the inclusion CP∞ →

BU× {1} and + 7→ (∗, 0). We also write, for n ≥ 1,

Gn = Grn,2n−1 × {−n,−n+ 1, . . . , n}

and ιn : Gn → Gn+1 given by ι′n = ιn × fn where fn is the canonical inclusion
{−n, . . . , n} → {−(n + 1), . . . , n + 1}. Note that φ((Gr1,n)+) ⊂ Grn,2n−1 ×
{0, 1} ⊂ Gn. Thus we get a commutative diagram

[CP∞
+ ∧ CP∞

+ ,CP∞
+ ] limn [(Gr1,n)+ ∧ (Gr1,n)+,CP∞

+ ]

[CP∞
+ ∧ CP∞

+ ,BU× Z] limn [(Gr1,n)+ ∧ (Gr1,n)+,BU× Z]

[(BU× Z) ∧ (BU× Z),BU× Z] limn [Gn ∧Gn,BU× Z]

φ∗ φ∗

∼=

∼=

(φ∧φ)∗ (φ∧φ)∗

where the limits are taken over the maps (i1,n)+ ∧ (i1,n)+ respectively ι′n. Note
that here the uppermost two objects are only (pointed) sets, i.e. we do not
consider them to have any group structure. The lower two horizontal maps
are isomorphisms by Corollary 4.3. For this we use that Grn,k, and hence
Grn,k ∧ Grn,k, has a CW-complex structure with only cells of even dimension.
(For a cell structure on the real Grassmannians see e.g. the classical [MS, §6].
The complex case works the same in principle; it can be found in [GH, Chapter
1, 5].)

Denote by γn,k the canonical n-dimensional bundle over Grn,k. Set v1,n the
virtual bundle over (Gr1,n)+ given by γ1,n over Gr1,n and C0 over +, and un
the virtual bundle over Gn given by γn,2n−1 +Ck−n over Grn,2n−1 × {k}. Note
that ι∗n(un+1) ∼= un, i∗1,n(v1,n+1) ∼= v1,n, and φ|(Gr1,n)+(un,2n−1) ∼= v1,n.

Everything we will do in the next paragraph can be summarized in the
following diagram. We state it now, so that one may refer to it when reading
the subsequent text.

v′1 ∧ v′1 (v′1,n ∧ v′1,n)n

v1 ∧ v1 (v1,n ∧ v1,n)n

u ∧ u (un ∧ un)n

Let un ∧ un = pr∗1(un) · pr∗2(un), where pr1 and pr2 are the two projections
Gn ∧ Gn → Gn. Analogously define the bundle v1,n ∧ v1,n over (Gr1,n)+ ∧
(Gr1,n)+. These are compatible, hence they give us elements (un ∧un)n respec-
tively (v1,n ∧ v1,n)n of the two lower limit-terms on the right hand side (here
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we identify a bundle with the homotopy class of maps classifying it). Since
v1,n ∧ v1,n is, on CP∞, a virtual (actually genuine) line bundle, its classifying
map already lands in φ(CP∞

+ ) ⊂ BU× {0, 1} (up to homotopy). Hence we can
lift v1,n ∧ v1,n along φ∗ to an element v′1,n ∧ v′1,n ∈ [(Gr1,n)+ ∧ (Gr1,n)+,CP∞

+ ].
These are again compatible, hence they give us an element (v′1,n ∧ v′1,n)n of the
limit term in the upper right. These bundles also are, by definition, the pullback
under the inclusion (Gr1,n)+ → CP∞

+ of the bundle v′1 ∧ v′1 = pr∗1(v1)⊗ pr∗2(v1)
over CP∞

+ , where v1 is the bundle over CP∞
+ given by the canonical bundle γ1

over CP∞ and C0 over +. Denote by v1∧v1 = φ∗(v
′
1∧v′1), i.e. the virtual bundle

corresponding to v′1 ∧ v′1. By commutativity of the diagram and injectivity of
the middle map, we get that (φ ∧ φ)∗(u ∧ u) = v1 ∧ v1.

We write m′ for the map u∧ u : (BU×Z)∧ (BU×Z) → BU×Z and denote
by m the H-space multiplication on CP∞. Consider the following diagram

CP∞
+ ∧ CP∞

+ CP∞
+

(BU× Z) ∧ (BU× Z) BU× Z

m+

φ∧φ φ

m′

We want to see that it commutes up to homotopy. Our previous considerations
tell us that

(φ ∧ φ)∗(u ∧ u) = v1 ∧ v1 = φ∗(v
′
1 ∧ v′1)

This is exactly the statement that m′ ◦ (φ∧ φ) ' φ ◦m+, since, by definition of
v′1 ∧ v′1, it is homotopic to m. Hence φ is a map of monoids in hCW∗.

By Proposition 3.29, our adjunction Σ∞ a Ω∞ lifts to an adjunction between
MonhCW∗ and MonHoSpec. Thus, to see that the map Φ is a map of ring
spectra, it would be enough to prove that the monoid structure on Ω∞KU '
BU × Z coming from the structure of a monoidal functor on Ω∞ (which is
induced by Σ∞) is the same as the one we constructed above.

This seems like it should be true since in the zeroth component the multipli-
cation KU ∧KU → KU is just given by u ∧ u : (BU× Z) ∧ (BU× Z) → BU× Z
(cf. the construction in [Sw, p. 300ff.] we already referred to when introducing
KU). Sadly this seems to be cumbersome to prove in the framework we have
presented here since the action of Ω∞ on maps is not given in a very explicit
manner, at least in the literature (the problem is that this is already true for
the so called spectrification which is a process that replaces a CW-spectrum by
a homotopy equivalent Ω-spectrum and which lies at the heart of Ω∞). Hence
we have to refer to alternative settings of stable homotopy theory where this
statement follows more easily; see e.g. [nL].

Let ι : S2 ∼= CP1 → CP∞ be the inclusion. Consider the composition

Σ2S
∼=−−→ Σ∞S2 −→ Σ∞S2 ∨ S '−−→ Σ∞S2+

Σ∞ι+−−−−→ Σ∞CP∞
+

where we use that Σ∞S2 is cofinal in Σ2S for the isomorphism and Lemma 3.19
for the homotopy equivalence. This gives us an element β ∈ πs

2(CP∞
+ ).
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As we said before, ˜(Σ∞CP∞
+ )∗(X) is a ring and a module over πs

−∗(CP∞
+ )

with compatible multiplications. We want to localize it at β to get a ring
˜(Σ∞CP∞

+ )∗(X)[β−1]. Sadly neither of the first two rings is commutative, only
graded commutative. Luckily there is still a theory of localization in the non-
commutative case, as long as the multiplicative set we are localizing at fulfills
the so called Ore condition [Sk]. Since β ∈ πs

2(CP∞
+ ) lies in even degree, it

commutes with everything, and the multiplicative set B = {βn | n ∈ N0} fulfills
the Ore condition. Using the discussion in [Sk, Section 7], one checks, as in
the commutative case, that ˜(Σ∞CP∞

+ )∗(X)[β−1] is again a ring and that this
localization is exact.

We now want to obtain a map

ΨX : ˜(Σ∞CP∞
+ )∗(X)[β−1] −→ K̃U∗(X)

Recall that H denotes the canonical line bundle over CP1 ∼= S2. By Bott
periodicity, we have that multiplication with the element

H − 1 ∈ K̃(S2) ∼= K̃U0(S2) ∼= π2(KU)

is invertible (since it has an inverse in π−2(KU)). Hence it is enough to prove
that Φ sends multiplication with β to multiplication with H−1, i.e. that [Φ◦β] =
H − 1 ∈ K̃U0(S2). By the naturality of the adjunction bijection, for Σ∞ a Ω∞,
we obtain that Φ ◦Σ∞ι+ = φ ◦ ι+, which is the map classifying the bundle v1,2
over S2+ given by H over S2 and C0 over +. Hence it only remains to see that
the map K̃U0(S2+) → K̃U0(S2) induced by

Σ∞S2 −→ Σ∞S2 ∨ S '−−→ Σ∞S2+

maps v1,2 to H − 1.
For this note that, as ∨ constitutes the coproduct of HoSpec, Σ∞S2+ '

Σ∞S2 ∨ S induces a splitting K̃U0(S2+)
∼= K̃U0(S2) ⊕ K̃U0(S0). This is equiva-

lent to the splitting K̃(S2+)
∼= K̃(S2) ⊕ K̃(S0) from Remark 2.20 since the map

K̃U0(S0) → K̃U0(S2+) induced by

Σ∞S2+
'−−→ Σ∞S2 ∨ S −→ S

is homotopic to the one induced by the map S2+ → S0 collapsing S2 to a point
(this follows by inspection of the map in Lemma 3.19), which corresponds to
the split K̃(S0) → K̃(S2+). Thus the map K̃U0(S2+) → K̃U0(S2) is equivalent to
the other split K̃(S2+) → K̃(S2). Hence it also maps v1,2 to H − 1.

We have now shown that the map ΨX exists as claimed. This means we can
now state the theorem this section is about.
Theorem 4.7 (Snaith’s Theorem). Let X be a finite dimensional pointed CW-
complex. Then the natural map

ΨX : ˜(Σ∞CP∞
+ )∗(X)[β−1] −→ K̃U∗(X)

from above is an isomorphism of rings.
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4.3 The proof
We first state the two results constituting the main input.

Proposition 4.8. Let bU ∈ πs
2(BU+) be the composition

Σ2S
∼=−−→ Σ∞S2 −→ Σ∞S2 ∨ S '−−→ Σ∞S2+ −→ Σ∞BU+

Then there is an isomorphism of rings

˜(Σ∞BU+)
0(X)[b−1

U ] ∼= colim
n

∏
−n≤k

M̃U2k(X)

for all finite dimensional pointed CW-complexes X.

This is the ingredient we will use from Snaith’s original paper [Sn, Theorem
2.7].

Proposition 4.9. Let X be a CW-complex. Then the map

Φ∗ : ˜(Σ∞CP∞
+ )0(X) −→ K̃U0(X)

is surjective.

This is proven in [Se].
We need two more lemmas, then we will finally by able to prove Snaith’s

Theorem.

Lemma 4.10. There is no torsion in πs
∗(CP∞

+ )[β−1].

Proof. Denote by detn : U(n) → U(1) the determinant. These maps are com-
patible with the inclusions ιn : U(n) → U(n+1) from Definition 3.34 and hence
combine to a map det : U → U(1). Also writing i : U(1) → U for the inclusion,
we have det ◦ i = id. Hence, after applying the functor πs

∗ ◦ (−)+ ◦B, we obtain
a split injective map

πs
∗((Bi)+) : π

s
∗(CP∞

+ ) −→ πs
∗(BU+)

Since Bi : CP∞ → BU is just the canonical inclusion, the map πs
∗((Bi)+) sends

β to bU . Hence we obtain a map

πs
∗(CP∞

+ )[β−1] −→ πs
∗(BU+)[b

−1
U ]

which is again injective. Since, by Proposition 4.5 and Proposition 4.8, the ring
πs
∗(BU+)[b

−1
U ] is torsion free, so is πs

∗(CP∞
+ )[β−1].

Lemma 4.11. We have

πs
k(CP∞

+ )⊗Q ∼=

{
Q k ≥ 0 even
0 otherwise
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Proof. Since the stable homotopy groups πs
∗ = S̃∗ form an additive generalized

reduced homology theory and Q is flat, the rational stable homology groups
πs
∗ ⊗ Q also form an additive generalized homology theory. By Remark 3.17,

we have πs
nX = πn(Σ

∞X) ∼= colimk πn+k(Σ
kX). Hence, for n < 0, we have

πs
n(S

0) = 0 and thus also πs
n(S

0) ⊗ Q = 0. It follows that we can use the
Atiyah–Hirzebruch spectral sequence (Proposition 4.1) for h̃∗ = πs

∗ ⊗ Q and
X = CP∞

+ .
We will need to know the rational stable homotopy groups of S0. By a

theorem of Serre, the homotopy groups πn(Sk) are finite except if n = k or k
even and n = 2k− 1 [Hu, XI, Theorem 7.1 and Theorem 12.1]. Thus, for n > 0,
πs
n(S

0) is finite and πs
n(S

0)⊗Q = 0. Since πn(Sn) = Z and πn(Sn) → πn+1(S
n+1)

is an isomorphism, we have πs
0(S

0) = Z and πs
0(S

0)⊗Q = Q.
We get that

E2
p,q = Hp(CP∞;πs

q(S
0)⊗Q) ∼=

{
Hp(CP∞;Q) q = 0

0 q 6= 0

Hence the spectral sequence already collapses at the second page and there
are no extension problems. We obtain πs

n(CP∞
+ ) ∼= Hn(CP∞;Q), which is the

desired result.

We now put everything together.

Proof of Snaith’s Theorem. Since localization is exact, we have that the domain
is a cohomology theory. Hence, by Proposition 4.6, we only need to prove that

Ψn
S0 : ˜(Σ∞CP∞

+ )n(S0)[β−1] −→ K̃Un(S0)

is an isomorphism for all n ∈ Z. As both sides are compatibly two periodic,
it is actually even enough to show it for Ψ0

S0 and Ψ−1
S0 or equivalently for Ψ0

S0

and Ψ0
S1 . By Lemma 4.10 and Lemma 4.11, we have that the domain of Ψ0

S0 is
isomorphic to Z and that the domain of Ψ0

S1 is trivial. The same holds for the
respective targets. Since, by Proposition 4.9, both maps are surjective, they are
already isomorphisms.
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